首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
C. Kuhn  R. Müller 《PAMM》2008,8(1):10223-10224
The variational formulation of brittle fracture as formulated for example by Francfort and Marigo in [1], where the total energy is minimized with respect to any admissible crack set and displacement field, allows the identification of crack paths, branching of preexisting cracks and even crack initiation without additional criteria. For its numerical treatment a continuous approximation of the model in the sense of Γ-convergence has been presented by Bourdin in [2]. In the regularized Francfort–Marigo model cracks are represented by an additional field variable (secondary variable) s∈[0,1] which is 0 if the material is cracked and 1 if it is undamaged. In this work, we reinterpret the crack variable as a phase field order parameter and address cracking as a phase transition problem. The crack growth is governed by the evolution equation of the order parameter which resembles the Ginzburg–Landau equation. The numerical treatment is done by finite elements combined with an implicit Euler scheme for the time integration. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Charlotte Kuhn  Ralf Müller 《PAMM》2011,11(1):159-160
In the pioneering work by Griffith, it is assumed that a crack propagates, if this is energetically favorable. However, this original formulation requires a pre-existing initial crack. In order to bypass this deficiency of classical Griffith theory, Francfort and Marigo advocate a global variational criterion, where the total energy is minimized with respect to any admissible displacement field and crack set. Bourdin's regularized approximation of this variational formulation makes use of a continuous scalar field to indicate cracks. Based on this regularization a phase field fracture model is formulated. The crack field is assumed to follow a Ginzburg-Landau type evolution equation, and cracking is addressed as a phase transition problem. The coupled problem of mechanical balance equations and the evolution equation is solved using the finite element method combined with an implicit time integration scheme. The numerical solution naturally yields the crack evolution including crack propagation, kinking, branching and initiation without any additional criteria. In this work we study the driving mechanisms behind the crack evolution in the phase field fracture model and compare to the purely energetic considerations of the underlying variational formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Charlotte Kuhn  Ralf Müller 《PAMM》2010,10(1):121-122
Sharp interface material models can be related to phase field models by introducing an order parameter, whose value is assigned to the different phases of a material. The elastic material law is coupled to the evolution equation of the order parameter and cracking is addressed as a phase transition problem instead of a moving boundary value problem. A regularization parameter ϵ controls the width of the diffuse cracks represented by the order parameter and the underlying sharp interface model can be recovered from the phase field model by the limit ϵ → 0. However, in numerical simulations using standard finite elements with linear shape functions, the minimum value of ϵ is restricted by the grid size and therefore the discretization of the crack field requires extensive mesh refinement for small values of ϵ. In this work, we construct special 2d shape functions which take into account the exponential character of the crack field and its dependence on the parameter ϵ. Especially in simulations with small values of ϵ and a rather coarse mesh, the elements with exponential shape functions perform significantly better than standard linear elements. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Hydraulically driven fracture has gained more and more research activity in the last few years, especially due to the growing interest of the petroleum industry. Key challenge for a powerful simulation of this scenario is an effective modeling and numerical implementation of the behavior of the solid skeleton and the fluid phase, the mechanical coupling between the two phases as well as the incorporation of the fracture process. Existing models for hydraulic fracturing can be found for example in [1], where the crack path is predetermined, or in [2] who use a phase field fracture model in an elastic framework, however without incorporating the fluid flow. In this work we propose a new compact model structure for the Biot-type fluid transport in porous media at finite strains based on only two constitutive functions, that is the free energy function ψ and a dissipation potential ϕ that includes the incorporation of an additional Poiseuille-type fluid flow in cracks. This formulation is coupled to a phase field approach for fracture and is fully variational in nature, as shown in [3]. In contrast to formulations with a sharp-crack discontinuity, the proposed regularized approach has the main advantage of a straight-forward modeling of complex crack patterns including branching. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
Conventional laser beam welding of aluminum alloys often leads to hot cracking. This is caused by a complex process where thermo-mechanical and metallurgical aspects are involved; cf. [3], [2]. A possibility to prevent hot crack initiation yields the multi-beam welding technique (cf. [2]), where additional laser beams are led parallelly besides the main laser beam. There by optimal positions, sizes, and powers of the additional laser beams play an important role otherwise hot cracking can even be enhanced. In [1], [4], resp., a mechanical 1D and thermal 2D model of hot cracking was derived. It provides the basis for different formulations of constrained nonlinear programming problems to identify the optimal parameters of the additional laser beams. In the present paper a comparison between these formulations and between two different optimizers for the so far best formulation are presented. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Michael Strobl  Thomas Seelig 《PAMM》2015,15(1):155-156
In the phase field approach for fracture an additional scalar field is introduced in order to describe the state of the material between intact and fully broken. So far, for the loading dependent degradation of stiffness (damage) either the volumetric-deviatoric split of strain [1, 2] or the spectral decomposition [3, 4] is used. In contrast to such an isotropic degradation of stiffness, the fully broken state represents a crack with a particular orientation. Both aforementioned approaches do not take the crack orientation into account. This may lead to the violation of the crack boundary conditions. In order to satisfy these conditions the phase field approach is modified here by taking the orientation of the crack into account. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The numerical modeling of dynamic failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies and demands the formulation of additional branching criteria. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. We focus on the extension of a recently developed phase field model for fracture from the quasi-static setting towards the dynamic setting. It is obtained by taking into account inertial terms and associated dynamic integrators. The introduction of a history field, containing a maximum fracture-driving energy, provides a very transparent representation of the balance equation that governs the diffusive crack topology. In particular, it allows for the construction of an extremely robust operator split technique. In a subsequent step, the proposed model is extended to three dimensional problems. The dynamic treatment opens the door to the analysis of complex fracture phenomena like multiple crack branching and crack arrest. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
The initiation of a crack in a sound body is a real issue in the setting of Griffith’s theory of brittle fracture. If one uses the concept of critical energy release rate (Griffith’s criterion), it is in general impossible to initiate a crack. On the other hand, if we replace it by a least energy principle (Francfort–Marigo’s criterion), it becomes possible to predict the onset of cracking in any circumstance. However this latter criterion can appear too strong. We propose here to reinforce its interest by an argument of continuity. Specifically, we consider the issue of the initiation of a crack at a notch whose angle ω is considered as a parameter. The result predicted by the Griffith criterion is not continuous with respect to ω, since no initiation occurs when ω>0 while a crack initiates when ω=0. In contrast, the Francfort–Marigo’s criterion delivers a response which is continuous with respect to ω, even though the onset of cracking is necessarily brutal when ω>0. The theoretical analysis is illustrated by numerical computations.  相似文献   

10.
The paper investigates the modelling of phase transitions in multiphase fluid mixtures. The order parameter is identified with the set of concentrations and is a phase field in that it varies smoothly in the space region. This in turn requires that the continuity equations be regarded as constraints on the pertinent fields. The phase field is viewed as an internal variable whose evolution is subject to thermodynamic requirements. The second law allows for an extra entropy flux which proves to be proportional to the time derivative of the order parameter. Previous papers on the subject are revisited. It follows that their recourse to external mass supplies or to ad-hoc entropy fluxes can be avoided. The analogy of the phase-field model, with that of mixtures with mass–density gradients and extra entropy flux, is emphasized.  相似文献   

11.
Simon Schmidt  Ralf Müller 《PAMM》2017,17(1):561-562
We study the martensitic transformation with a phase field model, where we consider the Bain transformation path in a small strain setting. For the order parameter, interpolating between an austenitic parent phase and martensitic phases, we use a Ginzburg-Landau evolution equation, assuming a constant mobility. In [1], a temperature dependent separation potential is introduced. We use this potential to extend the model in [2], by considering a transient temperature field, where the temperature is introduced as an additional degree of freedom. This leads to a coupling of both the evolution equation of the order parameter and the mechanical field equations (in terms of thermal expansion) with the heat equation. The model is implemented in FEAP as a 4-node element with bi-linear shape functions. Numerical examples are given to illustrate the influence of the temperature on the evolution of the martensitic phase. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The numerical modeling of failure mechanisms in plates and shells due to fracture based on sharp crack discontinuities is extremely demanding and suffers in situations with complex crack topologies. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. In this paper, we extend ideas recently outlined in [1, 2] towards the phase field modeling of fracture in dimension-reduced continua with application to Kirchhoff plates and shells. The introduction of history fields, containing the maximum reference energy obtained in history, provides a very transparent representation of the coupled balance equations and allows the construction of an extremely robust operator split technique. The performance of the proposed models is demonstrated by means of representative numerical examples. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The domain structure around a crack tip plays a significant role in the fracture behavior of ferroelectrics. A continuum phase field model is used to investigate the microstructure at the crack front. The concept of the Eshelby momentum tensor and configurational forces is then generalized to account for the contributions of the polarization term. Implementation of the generalized configurational force in the Finite Element code enables us to numerically obtain the driving force at the crack tip, which corresponds to the crack-tip energy release rate. Calculations show that additional positive electric fields tend to prohibit crack growth, whereas additional negative electric fields tend to promote crack growth. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
First‐order phase transitions are modelled by a non‐homogeneous, time‐dependent scalar‐valued order parameter or phase field. The time dependence of the order parameter is viewed as arising from a balance law of the structure order. The gross motion is disregarded and hence the body is regarded merely as a heat conductor. Compatibility of the constitutive functions with thermodynamics is exploited by expressing the second law through the classical Clausius–Duhem inequality. First, a model for conductors without memory is set up and the order parameter is shown to satisfy a maximum theorem. Next, heat conductors with memory are considered. Different evolution problems are established through a system of differential equations whose form is related to the manner in which the memory property is represented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Hot cracking is one of the big problems in laser beam welding. By multi‐beam welding, first suggested in the 70‐s (cf. [1], [4]), hot cracking can be avoided. Hereby two additional laser beams are employed. These beams generate a compression which compensate for the critical tensile strain in the solid‐liquid region of the weld induced by the main laser beam. However, hot cracking can only be prevented if the positions, sizes, and powers of the additional laser beams are suitably chosen, i.e. are optimized. Non‐optimal values can even enhance hot cracking. Until now these quantities have been found either by trial and error or by prescribing them intuitively. In the present paper a constrained nonlinear programming problem is formulated to solve the problem of hot crack initiation by minimizing the accumulated transverse strain, i.e. the opening displacement, in the solid‐liquid region. This approach is based on the so‐called strip expansion technique, cf. [2]. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Topology optimization is used to optimize problems of flow around bodies and problems of guided flow. Within the context of research, optimization criteria are developed to increase the energy efficiency of these problems [1] [2] [3] [4] [5]. In order to evaluate the new criteria in respect to the increasing of energy efficiency, reference bodies for different Reynolds numbers in combination with given design space limitations are needed. Therefore, an optimal body at Reynolds number against 0 was analytically determined by Bourot [6]. At higher Reynolds numbers, in the range of laminar and turbulent flows, no analytical solution is known. Accordingly, reference bodies are calculated by CFD calculations at three technical relevant Reynolds numbers (1.000, 32.000, 100.000) in combination with parameter optimization. The cross section of the bodies is described by a parameterized model. To get the optimal body, a parameter optimization based on a “brute force”; algorithm is used to optimize with regard to the friction loss and pressure loss in order to minimize the total loss (cd-value). The result is an optimal parameter constellation, depending on the Reynolds number. Within the results, it is possible to develop the optimal geometries. The identified characteristics of the flow field around these bodies are used as base for new optimization criteria. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
The computational modeling of failure mechanisms in solids due to fracture based on sharp crack discontinuities suffers in situations with complex crack topologies. This can be overcome by diffusive crack modeling, based on the introduction of a crack phase field as outlined in [1, 2]. Following these formulations, we outline a thermodynamically consistent framework for phase field models of crack propagation in elastic solids, develop incremental variational principles and, as an extension to [1, 2], consider their numerical implementations by an efficient h-adaptive finite element method. A key problem of the phase field formulation is the mesh density, which is required for the resolution of the diffusive crack patterns. To this end, we embed the computational framework into an adaptive mesh refinement strategy that resolves the fracture process zones. We construct a configurational-force-based framework for h-adaptive finite element discretizations of the gradient-type diffusive fracture model. We develop a staggered computational scheme for the solution of the coupled balances in physical and material space. The balance in the material space is then used to set up indicators for the quality of the finite element mesh and accounts for a subsequent h-type mesh refinement. The capability of the proposed method is demonstrated by means of a numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
In the recent years phase-field modeling of fracture has become a promising tool to describe complex crack patterns in all kinds of solid materials. Many of the models assume an isotropic material behavior, which of course is not a meaningful assumption for e.g. biological tissues such as arterial walls. Since the phase-field approach introduces an additional (smeared) phase describing the evolution of the crack, this method is well suited to be extended to anisotropic materials without thinking about an adaption of the discretization technique. Anisotropy can be incorporated in several ways, like by an extension of the surface energy, i.e. by making the energy release rate orientation dependent, as considered in [1]. Our ansatz is based on a pure geometrical approach, namely on an anisotropic formulation of the crack surface itself. Here, we will focus on transversely isotropic and cubically anisotropic solids, where the latter one makes the incorporation of the second gradient of the crack phase field necessary. At the end one numerical example is shown, which conceptually shows the influence of the anisotropy on the crack path. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The paper discusses numerical formulations of the homogenization for solids with discrete crack development. We focus on multi–phase microstructures of heterogeneous materials, where fracture occurs in the form of debonding mechanisms as well as matrix cracking. The definition of overall properties critically depends on the developing discontinuities. To this end, we extend continuous formulations [1] to microstructures with discontinuities [2]. The basic underlying structure is a canonical variational formulation in the fully nonlinear range based on incremental energy minimization. We develop algorithms for numerical homogenization of fracturing solids in a deformation–driven context with non–trivial formulations of boundary conditions for (i) linear deformation and (ii) uniform tractions. The overall response of composite materials with fracturing microstructures are investigated. As a key result, we show the significance of the proposed non–trivial formulation of a traction–type boundary condition in the deformation–driven context. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The phase field modeling of brittle fracture was a topic of intense research in the last few years and is now well-established. We refer to the work [1-3], where a thermodynamically consistent framework was developed. The main advantage is that the phase-field-type diffusive crack approach is a smooth continuum formulation which avoids the modeling of discontinuities and can be implemented in a straightforward manner by multi-field finite element methods. Therefore complex crack patterns including branching can be resolved easily. In this paper, we extend the recently outlined phase field model of brittle crack propagation [1-3] towards the analysis of ductile fracture in elastic-plastic solids. In particular, we propose a formulation that is able to predict the brittle-to-ductile failure mode transition under dynamic loading that was first observed in experiments by Kalthoff and Winkler [4]. To this end, we outline a new thermodynamically consistent framework for phase field models of crack propagation in ductile elastic-plastic solids under dynamic loading, develop an incremental variational principle and consider its robust numerical implementation by a multi-field finite element method. The performance of the proposed phase field formulation of fracture is demonstrated by means of the numerical simulation of the classical Kalthoff-Winkler experiment that shows the dynamic failure mode transition. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号