首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we first utilize fractional calculus, the properties of classical and generalized Mittag-Leffler functions to prove the Ulam–Hyers stability of linear fractional differential equations using Laplace transform method. Meanwhile, Ulam–Hyers–Rassias stability result is obtained as a direct corollary. Finally, we apply the same techniques to discuss the Ulam’s type stability of fractional evolution equations, impulsive fractional evolutions equations and Sobolev-type fractional evolution equations.  相似文献   

2.
Mirjana Stojanovic 《PAMM》2013,13(1):367-368
Fractional differential equations have received increasing attention during recent years since the behavior of many physical systems can be properly described using the fractional order system theory. By fractional analog for Duhamel principle we give the existence-uniqueness result for linear and nonlinear time fractional evolution equations with singularities in corresponding norm in extended Colombeau algebra of generalized functions. In order to find the explicit solutions we use integral representation of the solution obtained via Laplace and Fourier transforms in succession and their inverses. We deal with some nonlinear models with singularities appearing in viscoelasticity and in anomalous processes, extending the results in viscoelasticity, continuum random walk, seismology, continuum mechanics and many other branches of life and science. The main task is finding existence-uniqueness results like in the case of evolution equations with entire derivatives. By examining the fractional evolution equations it turns out that they lead to till now known results from the evolution equations with entire derivatives in limiting case. They give more, behavior of the solution when order of derivatives are inside the intervals of entire points. In this way we can follow the influence of the operators generated by entire derivative in many fractional time evolution PDEs especially with singular initial data, and non-Lipschitz's nonlinear term. Apart from evolution equations we prove also an existence-uniqueness result for an initial value problem with singularities for linear and nonlinear fractional elliptic equation of Helmholtz type and fractional order α, where 1 < Re(α) ≤ 2, with respect to the one variable from R +. As a framework, we employ also Colombeau algebra of generalized functions containing fractional derivatives and operations among them in order to deal with the fractional equations with singularities. We apply the same techniques to the fractional Laplace and Poisson equation linear and nonlinear ones. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
In this paper, we deals with the existence of mild $L$-quasi-solutions to the boundary value problem for a class of semilinear impulsive fractional evolution equations in an ordered Banach space $E$. Under a new concept of upper and lower solutions, a new monotone iterative technique on the initial value problem of impulsive fractional evolution equations has been established. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. As some application that illustrate our results, An example is also given.  相似文献   

4.
The purpose of this paper is concerned with the existence of mild $L$-quasi-solutions for Hilfer fractional evolution equations with nonlocal conditions in an ordered Banach spaces $E$. By employing mixed monotone iterative technique, measure of noncompactness and Sadovskii"s fixed point theorem, we obtain the existence of mild $L$-quasi-solutions for Hilfer fractional evolution equations with noncompact semigroups. Finally, an example is provide to illustrate the feasibility of our main results.  相似文献   

5.
The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct approximate solutions for nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equations with respect to time and space fractional derivatives. Also, we apply complex transformation to convert a time and space fractional nonlinear KPP equation to an ordinary differential equation and use the homotopy perturbation method to calculate the approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   

6.
In this paper, the Bäcklund transformation of fractional Riccati equation is presented to establish traveling wave solutions for two nonlinear space–time fractional differential equations in the sense of modified Riemann–Liouville derivatives, namely, the space–time fractional generalized reaction duffing equation and the space–time fractional diffusion reaction equation with cubic nonlinearity. The proposed method is effective and convenient for solving nonlinear evolution equations with fractional order. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Since population behaviors possess the characteristic of history memory, we, in this paper, introduce time fractional‐order derivatives into a diffusive Gause‐type predator‐prey model, which is time fractional‐order reaction‐diffusion equations and a generalized form of its corresponding first‐derivative model. For this kind of model, we prove the existence and uniqueness of a global positive solution by using the theory of evolution equations and the comparison principle of time fractional‐order partial differential equations. Besides, we obtain the stability and Hopf bifurcation of the Gause‐type predator‐prey model in the forms of the time fractional‐order ordinary equations and of the time fractional‐order reaction‐diffusion equations, respectively. Our results show that the stable region of the parameters in these 2 models can be enlarged by the time fractional‐order derivatives. Some numerical simulations are made to verify our results.  相似文献   

8.
Space–time fractional evolution equations are a powerful tool to model diffusion displaying space–time heterogeneity. We prove existence, uniqueness and stochastic representation of classical solutions for an extension of Caputo evolution equations featuring time-nonlocal initial conditions. We discuss the interpretation of the new stochastic representation. As part of the proof a new result about inhomogeneous Caputo evolution equations is proven.  相似文献   

9.
This paper investigates the nonlinear time-space fractional reaction-diffusion equations with nonlocal initial conditions. Based on the operator semigroup theory, we transform the time-space fractional reaction-diffusion equation into an abstract evolution equation. The existence and uniqueness of mild solution to the reaction-diffusion equation are obtained by solving the abstract evolution equation. Finally, we verify the Mittag-Leffler-Ulam stabilities of the nonlinear time-space fractional reaction-diffusion equations with nonlocal initial conditions. The results in this paper improve and extend some related conclusions to this topic.  相似文献   

10.
Existence and ergodicity of a strictly stationary solution for linear stochastic evolution equations driven by cylindrical fractional Brownian motion are proved. Ergodic behavior of non-stationary infinite-dimensional fractional Ornstein-Uhlenbeck processes is also studied. Based on these results, strong consistency of suitably defined families of parameter estimators is shown. The general results are applied to linear parabolic and hyperbolic equations perturbed by a fractional noise. This work was partially supported by the GACR Grant 201/04/0750 and by the MSMT Research Plan MSM 4977751301.  相似文献   

11.
We consider a class of fractional evolution equations with nonlocal integral conditions in Banach spaces. New existence of mild solutions to such a problem are established using Schauder fixed-point theorem, diagonal argument and approximation techniques under the hypotheses that the nonlinear term is Carathéodory continuous and satisfies some weak growth condition, the nonlocal term depends on all the value of independent variable on the whole interval and satisfies some weak growth condition. This work may be viewed as an attempt to develop a general existence theory for fractional evolution equations with general nonlocal integral conditions. Finally, as a sample of application, the results are applied to a fractional parabolic partial differential equation with nonlocal integral condition. The results obtained in this paper essentially extend some existing results in this area.  相似文献   

12.
In this paper, we consider a class of stochastic delay fractional evolution equations driven by fractional Brownian motion in a Hilbert space. Sufficient conditions for the existence and uniqueness of mild solutions are obtained. An application to the stochastic fractional heat equation is presented to illustrate the theory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the Adomian’s decomposition method has been developed to yield approximate solution of the reaction-diffusion model of fractional order which describe the evolution of the bacterium Bacillus subtilis, which grows on the surface of thin agar plates. The fractional derivatives are described in the Caputo sense. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

14.
In this paper, the approximate controllability for Sobolev-type fractional neutral stochastic evolution equations with fractional stochastic nonlocal conditions and fractional Brownian motion in a Hilbert space are studied. The results are obtained by using semigroup theory, fractional calculus, stochastic integrals for fractional Brownian motion, Banach's fixed point theorem, and methods adopted directly from deterministic control problems for the main results. Finally, an example is given to illustrate the application of our result.  相似文献   

15.
In this paper, we derive the existence and uniqueness of mild solutions for inhomogeneous fractional evolution equations in Banach spaces by means of the method of fractional resolvent. Furthermore, we give the necessary and sufficient conditions for the existence of strong solutions. An example of the fractional diffusion equation is also presented to illustrate our theory.  相似文献   

16.
In this paper, we study optimal relaxed controls and relaxation of nonlinear fractional impulsive evolution equations. Firstly, existence of piecewise continuous mild solutions for the original fractional impulsive control system is presented. Secondly, fractional impulsive relaxed control system is constructed by using a regular countably additive measure and making the original control system convexified. Thirdly, optimal relaxed controls and relaxation theorems are obtained. Finally, application to initial-boundary value problem of fractional impulsive parabolic control system is considered.  相似文献   

17.
In this note we show the analytic solution of a class of fractional differential equations with variable coefficients by using operatorial methods. Taking inspiration from previous papers by Dattoli et al. [4], [5] and [6] about spectral properties of Laguerre derivative, we here generalize some of their results to fractional evolution equations. Besides that, we have two interesting generalized examples. One is about telegraph equation with time dependent coefficient. The other, that could be of some interest for realistic applications, is the fractional diffusion with a space-dependent diffusion coefficient.  相似文献   

18.
In this paper, we consider traces at initial times for functions with mixed time-space smoothness. Such results are often needed in the theory of evolution equations. Our result extends and unifies many previous results. Our main improvement is that we can allow general interpolation couples. The abstract results are applied to regularity problems for fractional evolution equations and stochastic evolution equations, where uniform trace estimates on the half-line are shown.  相似文献   

19.
Abstract

In this paper we study stochastic evolution equations driven by a fractional white noise with arbitrary Hurst parameter in infinite dimension. We establish the existence and uniqueness of a mild solution for a nonlinear equation with multiplicative noise under Lipschitz condition by using a fixed point argument in an appropriate inductive limit space. In the linear case with additive noise, a strong solution is obtained. Those results are applied to stochastic parabolic partial differential equations perturbed by a fractional white noise.  相似文献   

20.
We develop a theory of the Cauchy problem for linear evolution systems of partial differential equations with the Caputo-Dzhrbashyan fractional derivative in the time variable t. The class of systems considered in the paper is a fractional extension of the class of systems of the first order in t satisfying the uniform strong parabolicity condition. We construct and investigate the Green matrix of the Cauchy problem. While similar results for the fractional diffusion equations were based on the H-function representation of the Green matrix for equations with constant coefficients (not available in the general situation), here we use, as a basic tool, the subordination identity for a model homogeneous system. We also prove a uniqueness result based on the reduction to an operator-differential equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号