首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this article we present a high resolution hybrid central finite difference—WENO scheme for the solution of conservation laws, in particular, those related to shock–turbulence interaction problems. A sixth order central finite difference scheme is conjugated with a fifth order weighted essentially non-oscillatory WENO scheme in a grid-based adaptive way. High order multi-resolution analysis is used to detect the high gradients regions of the numerical solution in order to capture the shocks with the WENO scheme while the smooth regions are computed with the more efficient and accurate central finite difference scheme. The application of high order filtering to mitigate the dispersion error of central finite difference schemes is also discussed. Numerical experiments with the 1D compressible Euler equations are shown.  相似文献   

2.
We present a class of high‐order weighted essentially nonoscillatory (WENO) reconstructions based on relaxation approximation of hyperbolic systems of conservation laws. The main advantage of combining the WENO schemes with relaxation approximation is the fact that the presented schemes avoid solution of the Riemann problems due to the relaxation approach and high‐resolution is obtained by applying the WENO approach. The emphasis is on a fifth‐order scheme and its performance for solving a wide class of systems of conservation laws. To show the effectiveness of these methods, we present numerical results for different test problems on multidimensional hyperbolic systems of conservation laws. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

3.
In this article, we present a high‐resolution hybrid scheme for solving hyperbolic conservation laws in one and two dimensions. In this scheme, we use a cheap fourth order total variation diminishing (TVD) scheme for smooth region and expensive seventh order weighted nonoscillatory (WENO) scheme near discontinuities. To distinguish between the smooth parts and discontinuities, we use an efficient adaptive multiresolution technique. For time integration, we use the third order TVD Runge‐Kutta scheme. The accuracy of the resulting hybrid high order scheme is comparable with these of WENO, but with significant decrease of the CPU cost. Numerical demonstrates that the proposed scheme is comparable to the high order WENO scheme and superior to the fourth order TVD scheme. Our scheme has the added advantage of simplicity and computational efficiency. Numerical tests are presented which show the robustness and effectiveness of the proposed scheme.© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

4.
The focus of this paper is to simulate the transport of a passive pollutant by a flow modelled by the two-dimensional shallow water equations. Considering the friction terms, new model for simulating the steady and unsteady transport of pollutant is established. Then the adaptive semi-discrete central-upwind scheme based on central weighted essentially non-oscillatory reconstruction is utilized for simulating the two-dimensional steady and unsteady transport of pollutant. The non-oscillatory behavior and accuracy of the scheme are demonstrated by the numerical result.  相似文献   

5.
An adaptive method is developed for solving one-dimensional systems of hyperbolic conservation laws, which combines the rezoning approach with the finite volume weighted essentially non-oscillatory (WENO) scheme. An a posteriori error estimate, used to equidistribute the mesh, is obtained from the differences between respective numerical solutions of 5th-order WENO (WENO5) and 3rd-order ENO (ENO3) schemes. The number of grids can be adaptively readjusted based on the solution structure. For higher efficiency, mesh readjustment is performed every few time steps rather than every time step. In addition, a high order conservative interpolation is used to compute the physical solutions on the new mesh from old mesh based on the finite volume ENO reconstruction. Extensive examples suggest that this adaptive method exhibits more accurate resolution of discontinuities for a similar level of computational time comparing with that on a uniform mesh.  相似文献   

6.
In this paper we propose a family of well-balanced semi-implicit numerical schemes for hyperbolic conservation and balance laws. The basic idea of the proposed schemes lies in the combination of the finite volume WENO discretization with Roe’s solver and the strong stability preserving (SSP) time integration methods, which ensure the stability properties of the considered schemes [S. Gottlieb, C.-W. Shu, E. Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001) 89-112]. While standard WENO schemes typically use explicit time integration methods, in this paper we are combining WENO spatial discretization with optimal SSP singly diagonally implicit (SDIRK) methods developed in [L. Ferracina, M.N. Spijker, Strong stability of singly diagonally implicit Runge-Kutta methods, Appl. Numer. Math. 58 (2008) 1675-1686]. In this way the implicit WENO numerical schemes are obtained. In order to reduce the computational effort, the implicit part of the numerical scheme is linearized in time by taking into account the complete WENO reconstruction procedure. With the proposed linearization the new semi-implicit finite volume WENO schemes are designed.A detailed numerical investigation of the proposed numerical schemes is presented in the paper. More precisely, schemes are tested on one-dimensional linear scalar equation and on non-linear conservation law systems. Furthermore, well-balanced semi-implicit WENO schemes for balance laws with geometrical source terms are defined. Such schemes are then applied to the open channel flow equations. We prove that the defined numerical schemes maintain steady state solution of still water. The application of the new schemes to different open channel flow examples is shown.  相似文献   

7.
The problem of correspondence between symmetries and conservation laws for one-layer shallow water wave systems in the plane flow, axisymmetric flow and dispersive waves is investigated from the composite variational principle of view in the development of the study [N.H. Ibragimov, A new conservation theorem, Journal of Mathematical Analysis and Applications, 333(1) (2007) 311–328]. This method is devoted to construction of conservation laws of non-Lagrangian systems. Composite principle means that in addition to original variables of a given system, one should introduce a set of adjoint variables in order to obtain a system of Euler–Lagrange equations for some variational functional. After studying Lie point and Lie–Bäcklund symmetries, we obtain new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to shallow water wave systems. In particular, we obtain infinite local conservation laws and potential symmetries for the plane flow case.  相似文献   

8.
In this work, a Large Time Step (LTS) explicit finite volume scheme designed to allow CFL > 1 is applied to the numerical resolution of 2D scalar and systems of conservation laws on triangular grids. Based on the flux difference splitting formulation, a special concern is put on finding the way of packing the information to compute the numerical solution when working on unstructured grids. Not only the cell areas but also the length of the interfaces and their orientation are questions of interest to send the information from each edge or interface. The information to update the cell variables is computed according to the local average discrete velocity and the orientation of the edges of the cells involved. The performance of these ideas is tested and compared with the conventional explicit first order and second order schemes in academic configurations for the 2D linear scalar equation and for 2D systems of conservation laws (in particular the shallow water equations) without source terms. The LTS scheme is demonstrated to preserve or even gain accuracy and save computational time with respect to the first order scheme.  相似文献   

9.
We present an Eulerian‐Lagrangian localized adjoint method (ELLAM) for linear advection‐reaction partial differential equations in multiple space dimensions. We carry out numerical experiments to investigate the performance of the ELLAM scheme with a range of well‐perceived and widely used methods in fluid dynamics including the monotonic upstream‐centered scheme for conservation laws (MUSCL), the minmod method, the flux‐corrected transport method (FCT), and the essentially non‐oscillatory (ENO) schemes and weighted essentially non‐oscillatory (WENO) schemes. These experiments show that the ELLAM scheme is very competitive with these methods in the context of linear transport PDEs, and suggest/justify the development of ELLAM‐based simulators for subsurface porous medium flows and other applications. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 22–43, 2003  相似文献   

10.
The system of shallow water equations admits infinitely many conservation laws. This paper investigates weak local residuals as smoothness indicators of numerical solutions to the shallow water equations. To get a weak formulation, a test function and integration are introduced into the shallow water equations. We use a finite volume method to solve the shallow water equations numerically. Based on our numerical simulations, the weak local residual of a simple conservation law with a simple test function is identified to be the best as a smoothness indicator.  相似文献   

11.
The method for constructing upwind high-resolution schemes is proposed in application to the modeling of ionizing waves in gas discharges. The flux-limiting criterion for continuity equations is derived using the proposed partial monotony property of a finite difference scheme. For two-dimensional extension, the cone transport upwind approach for constructing genuinely two-dimensional difference schemes is used. It is shown that when calculating rotations of symmetric profiles by using this scheme, a circular form of isolines is not distorted in a distinct from the coordinate splitting method. The conservative second order finite-difference scheme is proposed for solving the equations system of the drift-diffusion model of electric discharge; this scheme implies finite-difference conservation laws of electric charge and full electric current (fully conservative scheme). Computations demonstrate absence of numeric oscillations and good resolution of two-dimensional ionizing fronts in simulations of streamer and barrier discharges  相似文献   

12.
We classify zeroth-order conservation laws of systems from the class of two-dimensional shallow water equations with variable bottom topography using an optimized version of the method of furcate splitting. The classification is carried out up to equivalence generated by the equivalence group of this class. We find additional point equivalences between some of the listed cases of extensions of the space of zeroth-order conservation laws, which are inequivalent up to transformations from the equivalence group. Hamiltonian structures of systems of shallow water equations are used for relating the classification of zeroth-order conservation laws of these systems to the classification of their Lie symmetries. We also construct generating sets of such conservation laws under action of Lie symmetries.  相似文献   

13.
We develop a formally high order Eulerian–Lagrangian Weighted Essentially Nonoscillatory (EL‐WENO) finite volume scheme for nonlinear scalar conservation laws that combines ideas of Lagrangian traceline methods with WENO reconstructions. The particles within a grid element are transported in the manner of a standard Eulerian–Lagrangian (or semi‐Lagrangian) scheme using a fixed velocity v. A flux correction computation accounts for particles that cross the v‐traceline during the time step. If v = 0, the scheme reduces to an almost standard WENO5 scheme. The CFL condition is relaxed when v is chosen to approximate either the characteristic or particle velocity. Excellent numerical results are obtained using relatively long time steps. The v‐traceback points can fall arbitrarily within the computational grid, and linear WENO weights may not exist for the point. A general WENO technique is described to reconstruct to any order the integral of a smooth function using averages defined over a general, nonuniform computational grid. Moreover, to high accuracy, local averages can also be reconstructed. By re‐averaging the function to a uniform reconstruction grid that includes a point of interest, one can apply a standard WENO reconstruction to obtain a high order point value of the function. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 651–680, 2017  相似文献   

14.
The two-dimensional modelling of shallow water flows over multi-sediment erodible beds is presented. A novel approach is developed for the treatment of multiple sediment types in morphodynamics. The governing equations include the two-dimensional shallow water equations for hydrodynamics, an Exner-type equation for morphodynamics, a two-dimensional transport equation for the suspended sediments, and a set of empirical equations for entrainment and deposition. Multilayer sedimentary beds are formed of different erodible soils with sediment properties and new exchange conditions between the bed layers are developed for the model. The coupled equations yield a hyperbolic system of balance laws with source terms. As a numerical solver for the system, we implement a fast finite volume characteristics method. The numerical fluxes are reconstructed using the method of characteristics which employs projection techniques. The proposed finite volume solver is simple to implement, satisfies the conservation property and can be used for two-dimensional sediment transport problems in non-homogeneous isotropic beds without need of complicated three-dimensional equations. To assess the performance of the proposed models, we present numerical results for a wide variety of shallow water flows over sedimentary layers. Comparisons to experimental data for dam-break problems over movable beds are also included in this study.  相似文献   

15.
Stationary expansion shocks have been identified recently as a new type of solution to hyperbolic conservation laws regularized by nonlocal dispersive terms that naturally arise in shallow‐water theory. These expansion shocks were studied previously for the Benjamin‐Bona‐Mahony (BBM) equation using matched asymptotic expansions. In this paper, we extend the BBM analysis to the regularized Boussinesq system by using Riemann invariants of the underlying dispersionless shallow‐water equations. The extension for a system is nontrivial, requiring a combination of small amplitude, long‐wave expansions with high order matched asymptotics. The constructed asymptotic solution is shown to be in excellent agreement with accurate numerical simulations of the Boussinesq system for a range of appropriately smoothed Riemann data.  相似文献   

16.
A high-accuracy Runge-Kutta/WENO method of up to fourth order with respect to time and fifth order with respect to space is developed for the numerical modeling of small-amplitude wave propagation in a steady fluid-saturated elastic porous medium. A system of governing equations is derived from a general thermodynamically consistent model of a compressible fluid flow through a saturated elastic porous medium, which is described by a hyperbolic system of conservation laws with allowance for finite deformations of the medium. The results of numerical solution of one- and two-dimensional wave fields demonstrate the efficiency of the method.  相似文献   

17.
In this paper, a class of high-order central Hermite WENO (HWENO) schemes based on finite volume framework and staggered meshes is proposed for directly solving one- and two-dimensional Hamilton-Jacobi (HJ) equations. The methods involve the Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. This work can be regarded as an extension of central HWENO schemes for hyperbolic conservation laws (Tao et al. J. Comput. Phys. 318, 222–251, 2016) which combine the central scheme and the HWENO spatial reconstructions and therefore carry many features of both schemes. Generally, it is not straightforward to design a finite volume scheme to directly solve HJ equations and a key ingredient for directly solving such equations is the reconstruction of numerical Hamiltonians to guarantee the stability of methods. Benefited from the central strategy, our methods require no numerical Hamiltonians. Meanwhile, the zeroth-order and the first-order moments of the solution are involved in the spatial HWENO reconstructions which is more compact compared with WENO schemes. The reconstructions are implemented through a dimension-by-dimension strategy when the spatial dimension is higher than one. A collection of one- and two- dimensional numerical examples is performed to validate high resolution and robustness of the methods in approximating the solutions of HJ equations, which involve linear, nonlinear, smooth, non-smooth, convex or non-convex Hamiltonians.  相似文献   

18.
Symmetry groups, symmetry reductions, optimal system, conservation laws and invariant solutions of the shallow water wave equation with nonlocal term are studied. First, Lie symmetries based on the invariance criterion for nonlocal equations and the solution approach for nonlocal determining equations are found and then the reduced equations and optimal system are obtained. Finally, new conservation laws are generated and some similarity solutions for symmetry reduction forms are discussed.  相似文献   

19.
In the present paper, a hybrid filter is introduced for high accurate numerical simulation of shock‐containing flows. The fourth‐order compact finite difference scheme is used for the spatial discretization and the third‐order Runge–Kutta scheme is used for the time integration. After each time‐step, the hybrid filter is applied on the results. The filter is composed of a linear sixth‐order filter and the dissipative part of a fifth‐order weighted essentially nonoscillatory scheme (WENO5). The classic WENO5 scheme and the WENO5 scheme with adaptive order (WENO5‐AO) are used to form the hybrid filter. Using a shock‐detecting sensor, the hybrid filter reduces to the linear sixth‐order filter in smooth regions for damping high frequency waves and reduces to the WENO5 filter at shocks in order to eliminate unwanted oscillations produced by the nondissipative spatial discretization method. The filter performance and accuracy of the results are examined through several test cases including the advection, Euler and Navier–Stokes equations. The results are compared with that of a hybrid second‐order filter and also that of the WENO5 and WENO5‐AO schemes.  相似文献   

20.
V. S. Titov 《Acta Appl Math》1989,15(1-2):137-147
The local symmetries and conservation laws are calculated for the equations of shallow water with an axisymmetric profile of bottom under the assumption that the corresponding generating functions may depend only on all variables and their derivatives up to the second order. It is shown that if the bottom has the form of a paraboloid of revolution, then there are many symmetries and conservation laws generalizing those for the case of plane bottom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号