首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
杨忠鹏 《数学季刊》1991,6(4):100-101
设A=(a_(ij))是n×n实矩阵,A的谱{λ_1,λ_2,…,λ_n}满足ρ(A)=|λ_1|≥|λ_2|≥…≥|λ_n|。如果A的每个奇数阶主子式是(非负)正的且每个偶数阶主子式是(非正)负的,则称A是(半)PN—矩阵。在过去的十几年里,PN—矩阵类和半PN—矩阵类在经济学文献中已引起足够的重视[1],因为每个主子式皆为负(非正)的矩阵被  相似文献   

2.
关于p.n.p.矩阵的谱性质   总被引:3,自引:1,他引:2  
§1 引言 定义1 设∈R~n×n),若A的每一k阶主子式是非正的,1≤k≤n,则称A是一偏非正矩阵,简称p.n.p.矩阵。 特别地,若一p.n.p.矩阵的每一k阶主子式是负的,1≤k≤n,则称此矩阵为偏负矩阵,简称为p.n.矩阵。 1974年J.J.Johnson给出了p.n.p.矩阵具有一负特征值的充分条件以及p.n.矩阵的两个谱性质。  相似文献   

3.
逆p·n·p·矩阵的表征   总被引:1,自引:0,他引:1  
一个n阶实方阵A,若其各阶主子式皆非正,则称A为p.n.p.矩阵,记作A∈PNP;特别地,若A∈NP且各阶主子式皆负,则称A为p.n.矩阵,记作A∈PN进一步,若n阶实方阵A非奇异,且A-1∈PNP,则称A为逆p.n.p.矩阵,记作A∈IPNP;特别地,若A-1∈PN,则称A为逆p.n.矩阵,记作A∈IPN。  相似文献   

4.
设R(C)为实(复)数域,H~(n×n)为n×n的Hermitian矩阵的集合。当A(∈C~(n×n))的特征值皆为实数时,如不特殊说明,约定A的特征值满足λ_1(A)≥…≥λ_n(A)。文[1]有如下不等式, 令A=B=[(?)],知(1)式一般不成立,(1)式是[1]将[2]的关于奇异值不等式  相似文献   

5.
正1引言1.1 背景简介设A ∈ R~(n×n)为n阶实对称矩阵,矩阵A的特征值分解是找正交矩阵U ∈R~(n×n),使得A=UAU~T,(1.1)其中U~T指U的转置,Λ为对角矩阵,且Λ=diag(λ_1,λ_2,…,λ_n),其中λ_i,i=1,…,n是矩阵A的特征值.矩阵A的奇异值分解为A=UEU~H,(1.2)其中,U ∈ C~(n×n)是酉矩阵,U~H是U的共轭转置,∑是非负实对角矩阵.当A正定时,奇异值分解和特征值分解等价.对一般实对称阵,奇异值和特征值绝对值相同.在实际应用中,往往不需要求得矩阵A的全部特征值和特征向量,只需要其绝对值最大的若干特征值所构成的近似特征值分解,以便进行矩阵近似求逆等任务.这种近似特征值分解被称为主特征值分解(Dominant Eigenvalue Decomposition),在矩阵近似求逆和主成分分析(PCA)[1]等方面有重要应用.  相似文献   

6.
徐树方 《计算数学》1992,14(1):33-43
考虑如下代数特征值反问题: 问题 G(A;{A_k}_1~n;λ).设 A=(a_(ij)),A_k=(a_(ij)~((k))),k=1,…,n是n+1个n×n的实对称矩阵,λ=(λ_1,…,λ_n)是n维实向量且λ_i≠λ_j,i≠j.求n维实向量c=(c_1,…,c_n)~T,使矩阵A(c)=A+sum from k=1 to n (c_kA_k)的特征值是λ_1,…,λ_n. 这一问题是经典加法问题的推广.当A_k-e_ke_k~~T(e_k是n阶单位阵的第k列)时,  相似文献   

7.
M-矩阵是指对一切i(?)j,都有α_(ij)≤0且一切主子式全为正的 n 阶实方阵 A=(α_(ij)).关于 M-矩阵特征值的估计,1975年佟文廷推进了 M-矩阵特征值之实部皆正的一般结果,指出 M-矩阵之绝对值最小的特征值为一正数[1],文[2]对这一特征值的界给出一个估计式,本文首先将这些估计式推广到一般的准 M-矩阵上去,其次从另一方向上讨论了 M-矩阵按模最小特征值的界,最后对不可约 M-矩阵的全部特征值进行了讨论。  相似文献   

8.
关于Wielandt-Hoffman定理   总被引:6,自引:0,他引:6  
孙继广 《计算数学》1983,5(2):208-212
关于正规矩阵的任意扰动,有下述定理成立. 定理1.设A为n阶正规矩阵,C为n阶任一矩阵.A的特征值为λ_1,…,λ_n,C的特征值为μ_1…,μ_n.C~H表示C的转置共轭,||·||_2与||·||_F分别表示矩阵的谱范数与Frobenius范数.记  相似文献   

9.
具有正特征值矩阵的P条件数界限的估计   总被引:2,自引:0,他引:2  
石钟慈 《数学学报》1964,14(6):790-795
<正> 设 n 阶非异矩阵 A 的特征值按模的大小顺序排列为|λ_1|≥|λ_2|≥…≥|λ_n|>0,比值  相似文献   

10.
用 AOR 方法求解线性方程组是众所周知的,我们将此方法应用到求解特征值问题方面.考虑下面特征值问题:(A—λI)x=0,(1.1)这里 A 是大型稀疏非奇异对称矩阵.显然,问题(1.1)有下面三条性质:i)其 n 个特征值都是实的,不妨设为λ_1≤λ_2≤…≤λ_n;(1.2)  相似文献   

11.
AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES   总被引:7,自引:0,他引:7  
Let T1,n be an n x n unreduced symmetric tridiagonal matrix with eigenvaluesand is an (n - 1) x (n - 1) submatrix by deleting the kth row and kth column, k = 1, 2,be the eigenvalues of T1,k andbe the eigenvalues of Tk+1,nA new inverse eigenvalues problem has put forward as follows: How do we construct anunreduced symmetric tridiagonal matrix T1,n, if we only know the spectral data: theeigenvalues of T1,n, the eigenvalues of Ti,k-1 and the eigenvalues of Tk+1,n?Namely if we only know the data: A1, A2, An,how do we find the matrix T1,n? A necessary and sufficient condition and an algorithm ofsolving such problem, are given in this paper.  相似文献   

12.
谭尚旺  张德龙 《数学杂志》2002,22(4):475-480
设A是n阶竞赛矩阵,k是非负整数。文[3]刻划了恰好有三个不同特征值的n阶竞赛矩阵,文[4]刻划了恰好有四个不同特征值并且0作为一个一重特征值的n阶竞赛矩阵。在这篇文章中我们主要研究了两个问题:(1)讨论当k是A的特征值时A的性质。(2)刻划恰好有四个不同特征值并且k作为一个一重特征值的全部n阶竞赛矩阵。  相似文献   

13.
On the way to establishing a commutative analog to the Gelfand-Kirillov theorem in Lie theory, Kostant and Wallach produced a decomposition of M(n) which we will describe in the language of linear algebra. The “Ritz values” of a matrix are the eigenvalues of its leading principal submatrices of order m=1,2,…,n. There is a unique unit upper Hessenberg matrix H with those eigenvalues. For real symmetric matrices with interlacing Ritz values, we extend their analysis to allow eigenvalues at successive levels to be equal. We also decide whether given Ritz values can come from a tridiagonal matrix.  相似文献   

14.
This report may be considered as a non-trivial extension of an unpublished report by William Kahan (Accurate Eigenvalues of a symmetric tri-diagonal matrix, Technical Report CS 41, Computer Science Department, Stanford University, 1966). His interplay between matrix theory and computer arithmetic led to the development of algorithms for computing accurate eigenvalues and singular values. His report is generally considered as the precursor for the development of IEEE standard 754 for binary arithmetic. This standard has been universally adopted by virtually all PC, workstation and midrange hardware manufactures and tens of billions of such machines have been produced. Now we use the features in this standard to improve the original algorithm.In this paper, we describe an algorithm in floating-point arithmetic to compute the exact inertia of a real symmetric (shifted) tridiagonal matrix. The inertia, denoted by the integer triplet (πνζ), is defined as the number of positive, negative and zero eigenvalues of a real symmetric (or complex Hermitian) matrix and the adjective exact refers to the eigenvalues computed in exact arithmetic. This requires the floating-point computation of the diagonal matrix D of the LDLt factorization of the shifted tridiagonal matrix T − τI with +∞ and −∞ rounding modes defined in IEEE 754 standard. We are not aware of any other algorithm which gives the exact answer to a numerical problem when implemented in floating-point arithmetic in standard working precisions. The guaranteed intervals for eigenvalues are obtained by bisection or multisection with this exact inertia information. Similarly, using the Golub-Kahan form, guaranteed intervals for singular values of bidiagonal matrices can be computed. The diameter of the eigenvalue (singular value) intervals depends on the number of shifts with inconsistent inertia in two rounding modes. Our algorithm not only guarantees the accuracy of the solutions but is also consistent across different IEEE 754 standard compliant architectures. The unprecedented accuracy provided by our algorithms could be also used to debug and validate standard floating-point algorithms for computation of eigenvalues (singular values). Accurate eigenvalues (singular values) are also required by certain algorithms to compute accurate eigenvectors (singular vectors).We demonstrate the accuracy of our algorithms by using standard matrix examples. For the Wilkinson matrix, the eigenvalues (in IEEE double precision) are very accurate with an (open) interval diameter of 6 ulps (units of the last place held of the mantissa) for one of the eigenvalues and lesser (down to 2 ulps) for others. These results are consistent across many architectures including Intel, AMD, SGI and DEC Alpha. However, by enabling IEEE double extended precision arithmetic in Intel/AMD 32-bit architectures at no extra computational cost, the (open) interval diameters were reduced to one ulp, which is the best possible solution for this problem. We have also computed the eigenvalues of a tridiagonal matrix which manifests in Gauss-Laguerre quadrature and the results are extremely good in double extended precision but less so in double precision. To demonstrate the accuracy of computed singular values, we have also computed the eigenvalues of the Kac30 matrix, which is the Golub-Kahan form of a bidiagonal matrix. The tridiagonal matrix has known integer eigenvalues. The bidiagonal Cholesky factor of the Gauss-Laguerre tridiagonal is also included in the singular value study.  相似文献   

15.
《数学季刊》2016,(2):111-117
Let D(G) = (dij )n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vertices vi and vj in G. A graph is called distance integral if all eigenvalues of its distance matrix are integers. In 2014, Yang and Wang gave a su?cient and necessary condition for complete r-partite graphs Kp1,p2,··· ,pr =Ka1·p1,a2·p2,··· ,as···ps to be distance integral and obtained such distance integral graphs with s = 1, 2, 3, 4. However distance integral complete multipartite graphs Ka1·p1,a2·p2,··· ,as·ps with s>4 have not been found. In this paper, we find and construct some infinite classes of these distance integral graphs Ka1·p1,a2·p2,··· ,as·ps with s = 5, 6. The problem of the existence of such distance integral graphs Ka1·p1,a2·p2,··· ,as·ps with arbitrarily large number s remains open.  相似文献   

16.
In this paper we consider a numerical enclosure method for multiple eigenvalues of an Hermitian matrix whose graph is a tree. If an Hermitian matrix A whose graph is a tree has multiple eigenvalues, it has the property that matrices which are associated with some branches in the undirected graph of A have the same eigenvalues. By using this property and interlacing inequalities for Hermitian matrices, we show an enclosure method for multiple eigenvalues of an Hermitian matrix whose graph is a tree. Since we do not generally know whether a given matrix has exactly a multiple eigenvalue from approximate computations, we use the property of interlacing inequalities to enclose some eigenvalues including multiplicities.In this process, we only use the enclosure of simple eigenvalues to enclose a multiple eigenvalue by using a computer and interval arithmetic.  相似文献   

17.
Localization theorems are discussed for the left and right eigenvalues of block quaternionic matrices. Basic definitions of the left and right eigenvalues of quaternionic matrices are extended to quaternionic matrix polynomials. Furthermore, bounds on the absolute values of the left and right eigenvalues of quaternionic matrix polynomials are devised and illustrated for the matrix p norm, where \({p = 1, 2, \infty, F}\). The above generalizes the bounds on the absolute values of the eigenvalues of complex matrix polynomials, which give sharper bounds to the bounds developed in [LAA, 358, pp. 5–22 2003] for the case of 1, 2, and \({\infty}\) matrix norms.  相似文献   

18.
We investigate lower bounds for the eigenvalues of perturbations of matrices. In the footsteps of Weyl and Ipsen & Nadler, we develop approximating matrices whose eigenvalues are lower bounds for the eigenvalues of the perturbed matrix. The number of available eigenvalues and eigenvectors of the original matrix determines how close those approximations can be, and, if the perturbation is of low rank, such bounds are relatively inexpensive to obtain. Moreover, because the process need not be restricted to the eigenvalues of perturbed matrices, lower bounds for eigenvalues of bordered diagonal matrices as well as for singular values of rank-k perturbations and other updates of n×m matrices are given.  相似文献   

19.
一个图的特征值通常指的是它的邻接矩阵的特征值,在图的所有特征值中,重数为1的特征值即所谓的单特征值具有特殊的重要性.确定一个图的单特征值是一个比较困难的问题,主要是没有一个通用的方法.1969年,Petersdorf和Sachs给出了点传递图单特征值的取值范围,但是对于具体的点传递图还需要根据图本身的特性来确定它的单特征值.给出一类正则二部图,它们是二面体群的凯莱图,这类图的单特征值中除了它的正、负度数之外还有0或者±1,而它们恰好是Petersdorf和Sachs所给出的单特征值范围内的中间取值.  相似文献   

20.
In this paper, we investigate graphs for which the corresponding Laplacian matrix has distinct integer eigenvalues. We define the set Si,n to be the set of all integers from 0 to n, excluding i. If there exists a graph whose Laplacian matrix has this set as its eigenvalues, we say that this set is Laplacian realizable. We investigate the sets Si,n that are Laplacian realizable, and the structures of the graphs whose Laplacian matrix has such a set as its eigenvalues. We characterize those i < n such that Si,n is Laplacian realizable, and show that for certain values of i, the set Si,n is realized by a unique graph. Finally, we conjecture that Sn,n is not Laplacian realizable for n ≥ 2 and show that the conjecture holds for certain values of n. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号