首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Attractors and approximations for lattice dynamical systems   总被引:1,自引:0,他引:1  
We present a sufficient condition for the existence of a global attractor for general lattice dynamical systems, then consider the existence of attractors and their approximation for second-order and first-order lattice systems which, in particular case, can be regarded as the spatial discretizations of corresponding wave equations and reaction-diffusion equations in Rk.  相似文献   

2.
We obtain an estimate of the upper bound for Kolmogorov's ε-entropy for the bounded sets with small "tail" in discrete spaces, then we present a sufficient condition for the existence of a global attractor for dissipative lattice systems in a reflexive Banach discrete space and establish an upper bound of Kolmogorov's ε-entropy of the global attractor for lattice systems.  相似文献   

3.
In this paper, we study the asymptotic behavior of solutions for the partly dissipative lattice dynamical systems in weighted spaces. We first establish the dynamic systems on infinite lattice, and then prove the existence of the global attractor in weighted spaces by the asymptotic compactness of the solutions. It is shown that the global attractors contain traveling waves. The upper semicontinuity of the global attractor is also considered by finite-dimensional approximations of attractors for the lattice systems.  相似文献   

4.
We study the asymptotic behavior of solutions of discrete nonlinear Schrödinger-type (DNLS) equations. For a conservative system, we consider the global in time solvability and the question of existence of standing wave solutions. Similarities and differences with the continuous counterpart (NLS-partial differential equation) are pointed out. For a dissipative system we prove existence of a global attractor and its stability under finite-dimensional approximations. Similar questions are treated in a weighted phase space. Finally, we propose possible extensions for various types of DNLS equations.  相似文献   

5.
The purpose of this work is to investigate the asymptotic behaviours of solutions for the discrete Klein–Gordon–Schrödinger type equations in one-dimensional lattice. We first establish the global existence and uniqueness of solutions for the corresponding Cauchy problem. According to the solution's estimate, it is shown that the semi-group generated by the solution is continuous and possesses an absorbing set. Using truncation technique, we show that there exists a global attractor for the semi-group. Finally, we extend the criteria of Zhou et al. [S. Zhou, C. Zhao, and Y. Wang, Finite dimensionality and upper semicontinuity of compact kernel sections of non-autonomous lattice systems, Discrete Contin. Dyn. Syst. A 21 (2008), pp. 1259–1277.] for finite fractal dimension of a family of compact subsets in a Hilbert space to obtain an upper bound of fractal dimension for the global attractor.  相似文献   

6.
Parabolic differential equations with discrete state-dependent delay are studied. The approach, based on an additional condition on the delay function introduced in [A.V. Rezounenko, Differential equations with discrete state-dependent delay: uniqueness and well-posedness in the space of continuous functions, Nonlinear Anal. 70 (11) (2009) 3978–3986] is developed. We propose and study an analogue of the condition which is sufficient for the well-posedness of the corresponding initial value problem on the whole space of continuous functions C. The dynamical system is constructed in C and the existence of a compact global attractor is proved.  相似文献   

7.
In this paper, we consider the long time behaviors for the partly dissipative stochastic reaction diffusion equations in \(D\in\mathbb{R}^n\). The main purpose of thie paper is to establish the existence of a compact global random attractor. The existence of a random absorbing set is first discussed for the systems and then an estimate on the solutions is derived when the time is large enough, which ensures the asymptotic compactness of solutions. Finally, establish the existence of the global attractor in \(L^2(D)\times L^2(D)\).  相似文献   

8.
In view of the possibility that the 3D Navier-Stokes equations (NSE) might not always have regular solutions, we introduce an abstract framework for studying the asymptotic behavior of multi-valued dissipative evolutionary systems with respect to two topologies—weak and strong. Each such system possesses a global attractor in the weak topology, but not necessarily in the strong. In case the latter exists and is weakly closed, it coincides with the weak global attractor. We give a sufficient condition for the existence of the strong global attractor, which is verified for the 3D NSE when all solutions on the weak global attractor are strongly continuous. We also introduce and study a two-parameter family of models for the Navier-Stokes equations, with similar properties and open problems. These models always possess weak global attractors, but on some of them every solution blows up (in a norm stronger than the standard energy one) in finite time.  相似文献   

9.
It is known that the concept of dissipativeness is fundamental for understanding the asymptotic behavior of solutions to evolutionary problems. In this paper we investigate the dissipative mechanism for some semilinear fourth-order parabolic equations in the spaces of Bessel potentials and discuss some weak conditions that lead to the existence of a compact global attractor. While for second-order reaction–diffusion equations the dissipativeness mechanism has already been satisfactorily understood (see Arrieta et al. (2004), doi:10.1142/S0218202504003234 [7]), for higher order problems in unbounded domains it has not yet been fully developed. As shown throughout the paper, one of the main differences from the case of reaction–diffusion equations stems from the lack of a maximum principle. Thus we have to rely here on suitable energy estimates for the solutions. As in the case of second-order reaction–diffusion equations, we show here that both linear and nonlinear terms have to collaborate in order to produce dissipativeness. Thus, the dissipative mechanisms in second-order and fourth-order equations are similar, although the lack of a maximum principle makes the proofs more difficult and the results not as complete.Finally, we make essential use of the sharp results of Cholewa and Rodriguez-Bernal (2012), doi:10.1016/j.na.2011.08.022 [12], on linear fourth-order equations with a very large class of linear potentials.  相似文献   

10.
In this paper we study the asymptotic behavior of solutions of a first-order stochastic lattice dynamical system with a multiplicative noise.We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth and dissipative conditions, so that uniqueness of the Cauchy problem fails to be true.Using the theory of multi-valued random dynamical systems we prove the existence of a random compact global attractor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号