首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is proved that the limit $$\mathop {\lim }\limits_{\Delta \to \infty } \mathop {\sup }\limits_\gamma \tfrac{1}{\Delta }\int_0^\Delta {f(\gamma (t))dt} $$ , wheref: ? → ? is a locally integrable (in the sense of Lebesgue) function with zero mean and the supremum is taken over all solutions of the generalized differential equation γ ∈ [ω1, ω2], coincides with the limit $$\mathop {\lim }\limits_{T \to \infty } \mathop {\sup }\limits_{c \geqslant 0} \varphi _f (k,{\mathbf{ }}T,{\mathbf{ }}c)$$ , where $$\varphi _f = \frac{{(k - 1)\bar I_f (T,c)}}{{1 + (k - 1)\bar \lambda _f (T,c)}},k = \frac{{\omega _2 }}{{\omega _1 }}$$ . Here ¯λf = λf /T, ¯ If =If/T, and λf is the Lebesgue measure of the set $$\{ \gamma \in [\gamma _0 ,\gamma _0 + T]:f(\gamma ) \geqslant c\} = A_f ,I_f = \int_{A_f } {f(\gamma )d\gamma } $$ . It is established that this limit always exists for almost-periodic functionsf.  相似文献   

2.
В статье даны полные д оказательства следу ющих утверждений. Пустьω — непрерывная неубывающая полуадд итивная функций на [0, ∞),ω(0)=0 и пусть M?[0, 1] — матрица узл ов интерполирования. Если $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n > 0$$ то существует точкаx 0∈[0,1] и функцияf ∈ С[0,1] таки е, чтоω(f, δ)=О(ω(δ)), для которой $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x_0 ) - f(x_0 )| > 0$$ Если же $$\mathop {\lim sup}\limits_{n \to \infty } \omega \left( {\frac{1}{n}} \right)\log n = \infty$$ , то существуют множес твоE второй категори и и функцияf ∈ С[0,1],ω(f, δ)=o(ω(δ)) та кие, что для всехxE $$\mathop {\lim sup}\limits_{n \to \infty } |L_n (\mathfrak{M},f,x)| = \infty$$ . Исправлена погрешно сть, допущенная автор ом в [5], и отмеченная в работе П. Вертеши [9].  相似文献   

3.
Quasi-normed Lorentz spaces Λψ, q of 2π-periodic functions with quasinorms $$\left\| f \right\|_{\psi ,q} = \left\{ {\int\limits_0^{2\pi } {\psi ^q (t)\left[ {\frac{1}{t}\int\limits_0^t {f * (x)} dx} \right]} ^q \frac{{dt}}{t}} \right\}^{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}} $$ (0<q<∞,ω(t): [0,2π]→R is a continuous concave function with finite derivative everywhere on (0, 2gp)) and classes of functions $$H_{\psi ,q}^\omega \equiv \{ f(x):f(x) \in \Lambda _{\psi ,q} ;\mathop {\sup }\limits_{0 \leqq h \leqq \delta } \left\| {f(x + h) - f(x)} \right\|_{\psi ,q} = O\{ \omega (\delta )\} , \delta \to + 0\} $$ (ω(δ) — modulus of continuity) are studied. Precise embedding conditions of classes H ψ, q ω into Lorentz spaces and into each other are obtained: $$\begin{array}{*{20}c} {H_{\psi ,q_1 }^\omega \subset \Lambda _{\psi ,q_2 } ;} & {H_{\psi ,q_1 }^\omega \subset {\rm H}_{\psi ,q_2 }^{\omega * } ,} & {0< q_2< q_1< \infty ,} \\ \end{array} $$ under conditions \(\mathop {\lim }\limits_{t \to \infty } \frac{{\psi (2t)}}{{\psi (t)}} > 1,\mathop {\overline {\lim } }\limits_{x \to \infty } \frac{{\psi (2t)}}{{\psi (t)}}< 2\) andω(δ)=O{ω(δ 2)},δ→+0, andω * (δ) is an arbitrary modulus of continuity.  相似文献   

4.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

5.
Для заданной на едини чной окружности огра ниченной функцииω(ξ) рассматр ивается усложненная задача а ппроксимации аналит ическими функциями: $$\mathop {\inf }\limits_{\varphi \in H^\infty } \left[ {\left\| {\omega - \varphi } \right\| + \mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k \left| {\lambda _k } \right|} \right],$$ где ∥·∥ понимается вL ,ε k ≧0 — заданные чис ла, $$\mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k< + \infty ,\varphi (z) = \mathop \Sigma \limits_{k = 0}^\infty \lambda _k z^k .$$ Доказывается, что при всех достаточно малы хε k экстремальной в этой задаче будет функция обычного наилучшего приближения (та же, что и приε k =0,k=0, 1, ...). В частности, при $$\omega (\zeta ) = \frac{{\gamma _0 }}{{\zeta ^n }} + \frac{{\gamma _1 }}{{\zeta ^{n - 1} }} + ... + \frac{{\gamma _{n - 1} }}{\zeta }$$ экстремальной оказы вается дробь Каратео дори—Фейера. Переход к двойственн ой задаче позволяет получить т очные оценки для клас са интегралов типа Коши, выделяемого огранич ениями, наложенными на велич ины коэффициентов ря да Тейлора.  相似文献   

6.
Пусть \(f(z) = \mathop \sum \limits_{k = 0}^\infty a_k z^k ,a_0 \ne 0, a_k \geqq 0 (k \geqq 0)\) — целая функци я,π n — класс обыкновен ных алгебраических мног очленов степени не вы ше \(n,a \lambda _n (f) = \mathop {\inf }\limits_{p \in \pi _n } \mathop {\sup }\limits_{x \geqq 0} |1/f(x) - 1/p(x)|\) . П. Эрдеш и А. Редди высказали пр едположение, что еслиf(z) имеет порядок ?ε(0, ∞) и $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (f)< 1, TO \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (f) > 0$$ В данной статье показ ано, что для целой функ ции $$E_\omega (z) = \mathop \sum \limits_{n = 0}^\infty \frac{{z^n }}{{\Gamma (1 + n\omega (n))}}$$ , где выполняется $$\lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{{\omega (n)}}{{e + 1}}} \right\}$$ , т.е. $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{1}{{\rho (e + 1)}}} \right\}< 1, a \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) = 0$$ . ФункцияE ω (z) имеет порядок ?.  相似文献   

7.
Пусть {? ik(x):i, k=1, 2,...} — орто нормированная систе ма в пространстве с полож ительной мерой и {a ik} — последов ательность действит ельных чисел, для которой $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \kappa ^2 (i,k)< \infty ,$$ где {x(i, K)} — определенна я неубывающая последовательность положительных чисел. Тогда суммаf(x) двойног о ортогонального ряд а \(\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) существует в смысле с ходимости в метрикеL 2 и сходимос ти почти всюду. Изучае тся порядок так называем ой сильной аппроксимац ииf(x) (при коэффициентн ых условиях) прямоуголь ными частными суммами \(s_{mn} (x) = \mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) . Основной ре зультат состоит в сле дующем. Если {λj(m):m=1, 2,...} — неубывающи е последовательност и положительньк чисел, стремящиеся к ∞ и такие, что \(\mathop {\lim \sup }\limits_{m \to \infty } \lambda _j (2m)/\lambda _j (m)< \sqrt 2 \) дляj=1,2, и если $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \left[ {\log log (i + 3)} \right]^2 \left[ {\log log (k + 3)} \right]^2 (\lambda _1^2 (i) + \lambda _2^2 (k))< \infty ,$$ TO ПОЧТИ ВСЮДУ $$\left\{ {\frac{1}{{mn}}\mathop \sum \limits_{i = 1}^m \mathop \sum \limits_{\kappa = 1}^m \left[ {s_{ik} (x) - f(x)} \right]^2 } \right\}^{1/2} = o_x (\lambda _1^{ - 1} (m) + \lambda _2^{ - 1} (n))$$ при min (m, n) → ∞.  相似文献   

8.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

9.
It is the aim of this paper to introduce two new notions of discrepancy. They are defined by the formulas $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z e^2 \pi i\omega \left( n \right)} \right)} - f\left( 0 \right)} \right|, and \hfill \\ \delta _N^r \left( {\omega ;f} \right) = \mathop {\sup }\limits_{\left| z \right| = r} \left| {\left( {{1 \mathord{\left/ {\vphantom {1 N}} \right. \kern-\nulldelimiterspace} N}} \right)\sum\limits_{n = 1}^N {f\left( {z \omega \left( n \right)} \right)} \cdot z - \int\limits_0^z {f\left( \zeta \right)d\zeta } } \right|, \hfill \\ \end{gathered} $$ wheref is a holomorphic function defined in the unit disc withf (k) (0)≠0 for allk∈?,r<1 is a positive number, and ω is a sequence in [0, 1]. The first of these discrepancies can be generalized for multidimensional sequences. ω is uniform distributed if and only if lim N→∞ Δ N r (ω;f)=0 resp. lim N→∞δ N r (ω;f)=0. These results are proved in a quantitative way by estimating the classical discrepancyD N (ω) by means ofΔ N r (ω;f) and δ N r (ω;f): $$\begin{gathered} \Delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Phi \left( {\Delta _N^r \left( {\omega ;f} \right)} \right), \hfill \\ \delta _N^r \left( {\omega ;f} \right) \ll D_N \left( \omega \right) \ll \Psi \left( {\delta _N^r \left( {\omega ;f} \right)} \right). \hfill \\ \end{gathered} $$ The functions Φ and Ψ only depend onf andr. These estimations are based on the inequalities ofKoksma-Hlawka andErdös-Turán.  相似文献   

10.
Доказывается, что для наименьших равномер ных рациональных уклоне нийR n(f) выпуклой на [0,1] функции с модулем непрерывно сти, не превосходящемω(δ), сп раведлива оценка $$R_n (f) \leqq c\frac{{\ln ^2 n}}{{n^2 }}\mathop {\max }\limits_{e^{ - n} \leqq \theta< 1} \left\{ {\omega (\theta )\ln \frac{1}{\theta }} \right\},$$ гдес — абсолютная по стоянная.  相似文献   

11.
В статье рассматрива ются множестваQ n , 1≦п<∞, ортонормированных с истемΦ={φ i (x)} i n =1, состоящих из функций, постоянных на интервалах \(\left( {\frac{{j - 1}}{n}, \frac{j}{n}} \right)\) , 1 ≦j ≦j ≦п. НаQ n естественно перенос ится с группы ортогон альных матриц порядкаn мера Хаара. Изучается поведение наQ n функци и $$S(\Phi ) = \mathop {\sup }\limits_{\mathop \sum \limits_{i = 1}^n y_i^2 = 1} (\int\limits_0^1 {\mathop {sup}\limits_{1 \leqq r \leqq n} } (\mathop \sum \limits_{i = 1}^n y_i \varphi (x))^2 dx)^{1/2} $$ . Доказывается, что приt > 0 иn=1,2,... $$\mu \{ \Phi \in Q^n :s(\Phi ) \geqq t\} \leqq (Ce^{ - \gamma t^2 } )^n $$ .  相似文献   

12.
В статье изучается по ведение суммы лакуна рного тригонометрическог о ряда при приближени и к некоторой фиксиров анной произвольной т очке. Первая половина рабо ты посвящена изложен ию метода исследования локаль ных свойств суммы лакунарного ря да, разработанного ав тором. Вторая половина рабо ты посвящена приложе ниям этого метода. Здесь в частно сти, получаются необходи мые и достаточные усл овия для интегрируемости сум мы лакунарного ряда с весом при широк их условиях на вес. При ведем соответствующий рез ультат. Пусть?р(x) — сумма ряда \(a + \sum\limits_{n = 1}^\infty {a_n \cos (\lambda _n x + \psi _n )} \) , гдеа, а n ,λ n ,ψ n — действительные числа,εa n /2 <∞,a n ≧0,λ n >0 приn≧1 и \(\mathop {\inf }\limits_{n \geqq 1} \lambda _{n + 1} /\lambda _n > 1\) . При этих условиях функция?(х) определена почти всю ду. Пустьр>0 иω(х) — положительная неуб ывающая функция, определенная при все хх>0, которая при некот оромC>0 удовлетворяет услов ию:ω(2x)≦ ≦Cω(х) при всехх>0. Тогда имеет место Теорема. Для того, чтоб ы интеграл \(\int\limits_{ + 0} {|\varphi (x)|^p \frac{{dx}}{{\omega (x)}}} \) сходился, необходимо и достато чно, чтобы сходились все р яды $$\begin{gathered} \sum\limits_{n = 1}^\infty {D_n (\sum\limits_{k = n}^\infty {a_k^2 } )^{p/2} ,} \sum\limits_{n = 2}^\infty {D_n |a_n + \sum\limits_{k = 1}^{n - 1} {a_k \cos } \psi _k |^p ,} \hfill \\ \sum\limits_{n = 2}^\infty {D_n (pj)|\sum\limits_{k = 1}^{n - 1} {a_k \lambda _k^j \cos (\psi _k + \pi j/2)} |^p ,} j = 1,2,..., \hfill \\ \end{gathered} $$ , где $$D_n = \int\limits_{I_n } {\frac{{dx}}{{\omega (x)}},} D_n (pj) = \int\limits_{I_n } {\frac{{x^{pj} dx}}{{\omega (x)}},} a I_n = [\pi \lambda _n^{ - 1} ,\pi \lambda _{n - 1}^{ - 1} ]$$   相似文献   

13.
LetG be an arbitrary domain in \(\bar C\) ,f a function meromorphic inG, $$M_f \mathop = \limits^{def} \mathop {\lim \sup }\limits_{G \mathrel\backepsilon z \to \partial G} \left| {f(z)} \right|< \infty ,$$ andR the sum of the principal parts in the Laurent expansions off with respect to all its poles inG. We set $$f_G (z) = R(z) - \alpha ,{\mathbf{ }}where{\mathbf{ }}\alpha = \mathop {\lim }\limits_{z \to \infty } (f(z) - R(z))$$ in case ∞?G, andα=0 in case ∞?G. It is proved that $$\left\| {f_G } \right\|_{C(\partial G)} \leqq 50(\deg f_G )M_f ,{\mathbf{ }}\left\| {f'_G } \right\|_{L_1 (\partial G)} \leqq 50(\deg f_G )V(\partial G)M_f ,$$ where $$V(\partial G) = \sup \left\{ {\left\| {r'} \right\|_{L_1 (\partial G)} :r(z) = a/(z - b),{\mathbf{ }}\left\| r \right\|_{G(\partial G)} \leqq 1} \right\}.$$   相似文献   

14.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

15.
The well-known Bombieri-A. I. Vinogradov theorem states that (1) $$\sum\limits_{q \leqslant x^{\tfrac{1}{2}} (\log x)^{ - s} } {\mathop {\max }\limits_{(a,q) = 1} \mathop {\max }\limits_{y \leqslant x} } \left| {\psi (y,q;a) - \frac{y}{{\varphi (q)}}} \right| \ll \frac{x}{{(\log x)^A }},$$ whereA is an arbitrary positive constant,B=B(A)>0, and as usual, $$\psi (x,q;a) = \sum\limits_{\mathop {n \leqslant x}\limits_{n = a(q)} } {\Lambda (n),}$$ Λ being the Von Mangoldt's function. The problem of finding a result analogous to (1) for short intervals was investigated by many authors. Using Heath-Brown's identity and the approximate functional equation for DirichletL-functions, A. Perelli, J. Pintz and S. Salerno in 1985 established the following extension of Bombieri's theorem: Theorem 1. (2) $$\sum\limits_{q \leqslant Q} {\mathop {\max }\limits_{(a,q) = 1} \mathop {\max }\limits_{h \leqslant y} \mathop {\max }\limits_{\frac{x}{2}< \approx \leqslant x} } \left| {\psi (z + h,q;a) - \psi (z,q;a) - \frac{h}{{\varphi (q)}}} \right| \ll \frac{y}{{(\log x)^A }}$$ where A>0 is an arbitrary constant,y=x θ $$\frac{7}{{12}}< \theta \leqslant 1, Q = x^{\frac{1}{{40}}} .$$ ,Q=x 1/40. By improving the basic lemma which A. Perelli, J. Pintz and S. Salerno used as the main tool to prove Theorem 1, we obtain Theorem 2.Under the same condition as in Theorem 1,for Q=x 1/38.5, (2)still holds.  相似文献   

16.
17.
В НАстОьЩЕЕ ВРЕМь ИжВ ЕстНО МНОгО УтВЕРжДЕ НИИ тИпА тЕОРЕМ ВлОжЕНИь, кОтО РыЕ ФОР-МУлИРУУтсь В тЕРМИНАх МОДУлЕИ НЕ пРЕРыВНОстИ. ДАННАь РАБОтА сОДЕРж Ит НЕскОлькО тЕОРЕМ В лОжЕНИь с УслОВИьМИ, ВыРАжЕННы МИ В тЕРМИНАх НАИлУЧшИх п РИБлИжЕНИИE n(?,p) ФУНкц ИИ ? тРИгОНОМЕтРИЧЕскИМ И пОлИНОМАМИ пОРьДкАn В МЕтРИкЕL p: И сслЕДУЕтсь ВлОжЕНИЕ клАссАE(α,p) ФУНкцИИ ИжL p, УДОВлЕтВОРьУ-ЩИх Дль жАДАННОИ МОНОтОН НО УБыВАУЩЕИ к НУлУ пОслЕДОВАтЕльНОстИ α={Аn} УслОВИУ $$E_n (f,p) \leqq M\alpha _n (M = M(f))< \infty ;n = 1,2,...).$$ хАРАктЕРНыМИ РЕжУль тАтАМИ РАБОты ьВльУт сь слЕДУУЩИЕ ДВА слЕДстВИь тЕОРЕМ ы 3. слЕДстВИЕ 1. пУстьР≧1И Β>?1.ЕслИ пОслЕДОВАтЕльНОстьn} УДОВлЕтВОРьЕт УслОВИУ: , тО Дль ВлОжЕНИь $$E(\alpha ,p) \subset L^p (\ln + L)^{\beta + 1} $$ НЕОБхОДИМО И ДОстАтОЧНО $$\mathop \sum \limits_{n = 2}^\infty \frac{{(\ln n)\beta }}{n}\alpha _n^p< \infty .$$ слЕДстВИЕ 2.ЕслИ v>p≧1,Β≧0 И {Аn} УДОВлЕтВОРьЕт УслОВИУ (1),тО Дль ВлОжЕ НИь $$E(\alpha ,p) \subset L^\nu (\ln + L)^\beta $$ НЕОБхОДИМО И ДОстАтО ЧНО $$\mathop \sum \limits_{n = 2}^\infty n^{\nu /p - 2} (\ln + n)^\beta \alpha _n^\nu< \infty ,$$   相似文献   

18.
Дль сИстЕМы РАжлИЧНы х тОЧЕкΤ=(t 1,...,t n ) Иж ОтРЕ жкА [?1,1] Иk?[0,1) ВВОДИтсь ВЕлИЧ ИНА $$L_n (\tau ,p,k) = \mathop {\max }\limits_{t \in [ - 1,1]} (\mathop \Sigma \limits_{j = 1}^n |D_j (t)|^p )^{1/p} ,$$ где $$D_j (t) = \frac{{\omega _j (t)}}{{\omega _j (t_j )}}[1 - kW_j^2 (t)],{\mathbf{ }}\omega _j (t) = \mathop \prod \limits_{\begin{array}{*{20}c} {m = 1} \\ {m \ne 1} \\ \end{array} }^n W_m (t),{\mathbf{ }}W_m (t) = \frac{{t - t_m }}{{1 - kt_m t}}.$$ пРИk=0 ОНА сОВпАДАЕт с кОНс тАНтОИ лЕБЕгА, сВьжАН НОИ с ИНтЕРпОльцИЕИ МНОгО ЧлЕНОМ лАгРАНжА. пОкАжАНА сВ ьжь ВЕлИЧИНыL n (Τ, p, k) с жАД АЧАМИ ИНтЕРпОльцИИ АНАлИт ИЧЕскИх ФУНкцИИ. Дль сИстЕМы $$Z = \left\{ {sn\left[ {\left( {\frac{{2j - 1}}{n} - 1} \right)K,k} \right]} \right\}_{j = 1}^n ,$$ ьВльУЩЕИсь АНАлОгОМ ЧЕБышЕВскОИ сИстЕМы, пОлУЧЕНы ОцЕНкИL n (Z, p, k) пРИp≧2 Иp≧1.  相似文献   

19.
LetH r be anr-uniform hypergraph. Letg=g(n;H r ) be the minimal integer so that anyr-uniform hypergraph onn vertices and more thang edges contains a subgraph isomorphic toH r . Lete =f(n;H r ,εn) denote the minimal integer such that everyr-uniform hypergraph onn vertices with more thane edges and with no independent set ofεn vertices contains a subgraph isomorphic toH r . We show that ifr>2 andH r is e.g. a complete graph then $$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r )$$ while for someH r with \(\mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r ) \ne 0\) $$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = 0$$ . This is in strong contrast with the situation in caser=2. Some other theorems and many unsolved problems are stated.  相似文献   

20.
LetG be a compact group andM 1(G) be the convolution semigroup of all Borel probability measures onG with the weak topology. We consider a stationary sequence {μ n } n=?∞ +∞ of random measures μ n n (ω) inM 1(G) and the convolutions $$v_{m,n} (\omega ) = \mu _m (\omega )* \cdots *\mu _{n - 1} (\omega ), m< n$$ and $$\alpha _n^{( + k)} (\omega ) = \frac{1}{k}\sum\limits_{i = 1}^k {v_{n,n + i} (\omega ),} \alpha _n^{( - k)} (\omega ) = \frac{1}{k}\sum\limits_{i = 1}^k {v_{n - i,n} (\omega )} $$ We describe the setsA m + (ω) andA n + (ω) of all limit points ofv m,n(ω) asm→?∞ orn→+∞ and the setA (ω) of its two-sided limit points for typical realizations of {μ n (ω)} n=?∞ +∞ . Using an appropriate random ergodic theorem we study the limit random measures ρ n (±) (ω)=lim k→∞ α n k) (ω).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号