首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
This paper considers the problem of learning multinomial distributions from a sample of independent observations. The Bayesian approach usually assumes a prior Dirichlet distribution about the probabilities of the different possible values. However, there is no consensus on the parameters of this Dirichlet distribution. Here, it will be shown that this is not a simple problem, providing examples in which different selection criteria are reasonable. To solve it the Imprecise Dirichlet Model (IDM) was introduced. But this model has important drawbacks, as the problems associated to learning from indirect observations. As an alternative approach, the Imprecise Sample Size Dirichlet Model (ISSDM) is introduced and its properties are studied. The prior distribution over the parameters of a multinomial distribution is the basis to learn Bayesian networks using Bayesian scores. Here, we will show that the ISSDM can be used to learn imprecise Bayesian networks, also called credal networks when all the distributions share a common graphical structure. Some experiments are reported on the use of the ISSDM to learn the structure of a graphical model and to build supervised classifiers.  相似文献   

2.
In this paper, we address the problem of learning discrete Bayesian networks from noisy data. A graphical model based on a mixture of Gaussian distributions with categorical mixing structure coming from a discrete Bayesian network is considered. The network learning is formulated as a maximum likelihood estimation problem and performed by employing an EM algorithm. The proposed approach is relevant to a variety of statistical problems for which Bayesian network models are suitable—from simple regression analysis to learning gene/protein regulatory networks from microarray data.  相似文献   

3.
This paper presents a new algorithm for learning the structure of a special type of Bayesian network. The conditional phase-type (C-Ph) distribution is a Bayesian network that models the probabilistic causal relationships between a skewed continuous variable, modelled by the Coxian phase-type distribution, a special type of Markov model, and a set of interacting discrete variables. The algorithm takes a data set as input and produces the structure, parameters and graphical representations of the fit of the C-Ph distribution as output. The algorithm, which uses a greedy-search technique and has been implemented in MATLAB, is evaluated using a simulated data set consisting of 20,000 cases. The results show that the original C-Ph distribution is recaptured and the fit of the network to the data is discussed.  相似文献   

4.
Models with intractable likelihood functions arise in areas including network analysis and spatial statistics, especially those involving Gibbs random fields. Posterior parameter estimation in these settings is termed a doubly intractable problem because both the likelihood function and the posterior distribution are intractable. The comparison of Bayesian models is often based on the statistical evidence, the integral of the un-normalized posterior distribution over the model parameters which is rarely available in closed form. For doubly intractable models, estimating the evidence adds another layer of difficulty. Consequently, the selection of the model that best describes an observed network among a collection of exponential random graph models for network analysis is a daunting task. Pseudolikelihoods offer a tractable approximation to the likelihood but should be treated with caution because they can lead to an unreasonable inference. This article specifies a method to adjust pseudolikelihoods to obtain a reasonable, yet tractable, approximation to the likelihood. This allows implementation of widely used computational methods for evidence estimation and pursuit of Bayesian model selection of exponential random graph models for the analysis of social networks. Empirical comparisons to existing methods show that our procedure yields similar evidence estimates, but at a lower computational cost. Supplementary material for this article is available online.  相似文献   

5.
The theory of Gaussian graphical models is a powerful tool for independence analysis between continuous variables. In this framework, various methods have been conceived to infer independence relations from data samples. However, most of them result in stepwise, deterministic, descent algorithms that are inadequate for solving this issue. More recent developments have focused on stochastic procedures, yet they all base their research on strong a priori knowledge and are unable to perform model selection among the set of all possible models. Moreover, convergence of the corresponding algorithms is slow, precluding applications on a large scale. In this paper, we propose a novel Bayesian strategy to deal with structure learning. Relating graphs to their supports, we convert the problem of model selection into that of parameter estimation. Use of non-informative priors and asymptotic results yield a posterior probability for independence graph supports in closed form. Gibbs sampling is then applied to approximate the full joint posterior density. We finally give three examples of structure learning, one from synthetic data, and the two others from real data.  相似文献   

6.
Bayesian networks are graphical models that represent the joint distribution of a set of variables using directed acyclic graphs. The graph can be manually built by domain experts according to their knowledge. However, when the dependence structure is unknown (or partially known) the network has to be estimated from data by using suitable learning algorithms. In this paper, we deal with a constraint-based method to perform Bayesian networks structural learning in the presence of ordinal variables. We propose an alternative version of the PC algorithm, which is one of the most known procedures, with the aim to infer the network by accounting for additional information inherent to ordinal data. The proposal is based on a nonparametric test, appropriate for ordinal variables. A comparative study shows that, in some situations, the proposal discussed here is a slightly more efficient solution than the PC algorithm.  相似文献   

7.
An estimation of distribution algorithm for nurse scheduling   总被引:2,自引:0,他引:2  
Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.  相似文献   

8.
We develop a methodology to efficiently implement the reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms of Green, applicable for example to model selection inference in a Bayesian framework, which builds on the “dragging fast variables” ideas of Neal. We call such algorithms annealed importance sampling reversible jump (aisRJ). The proposed procedures can be thought of as being exact approximations of idealized RJ algorithms which in a model selection problem would sample the model labels only, but cannot be implemented. Central to the methodology is the idea of bridging different models with fictitious intermediate models, whose role is to introduce smooth intermodel transitions and, as we shall see, improve performance. Efficiency of the resulting algorithms is demonstrated on two standard model selection problems and we show that despite the additional computational effort incurred, the approach can be highly competitive computationally. Supplementary materials for the article are available online.  相似文献   

9.
Bayesian networks (BNs) provide a powerful graphical model for encoding the probabilistic relationships among a set of variables, and hence can naturally be used for classification. However, Bayesian network classifiers (BNCs) learned in the common way using likelihood scores usually tend to achieve only mediocre classification accuracy because these scores are less specific to classification, but rather suit a general inference problem. We propose risk minimization by cross validation (RMCV) using the 0/1 loss function, which is a classification-oriented score for unrestricted BNCs. RMCV is an extension of classification-oriented scores commonly used in learning restricted BNCs and non-BN classifiers. Using small real and synthetic problems, allowing for learning all possible graphs, we empirically demonstrate RMCV superiority to marginal and class-conditional likelihood-based scores with respect to classification accuracy. Experiments using twenty-two real-world datasets show that BNCs learned using an RMCV-based algorithm significantly outperform the naive Bayesian classifier (NBC), tree augmented NBC (TAN), and other BNCs learned using marginal or conditional likelihood scores and are on par with non-BN state of the art classifiers, such as support vector machine, neural network, and classification tree. These experiments also show that an optimized version of RMCV is faster than all unrestricted BNCs and comparable with the neural network with respect to run-time. The main conclusion from our experiments is that unrestricted BNCs, when learned properly, can be a good alternative to restricted BNCs and traditional machine-learning classifiers with respect to both accuracy and efficiency.  相似文献   

10.
Summary New Bayesian cohort models designed to resolve the identification problem in cohort analysis are proposed in this paper. At first, the basic cohort model which represents the statistical structure of time-series social survey data in terms of age, period and cohort effects is explained. The logit cohort model for qualitative data from a binomial distribution and the normal-type cohort model for quantitative data from a normal distribution are considered as two special cases of the basic model. In order to overcome the identification problem in cohort analysis, a Bayesian approach is adopted, based on the assumption that the effect parameters change gradually. A Bayesian information criterion ABIC is introduced for the selection of the optimal model. This approach is so flexible that both the logit and the normal-type cohort models can be made applicable, not only to standard cohort tables but also to general cohort tables in which the range of age group is not equal to the interval between periods. The practical utility of the proposed models is demonstrated by analysing two data sets from the literature on cohort analysis. The Institute of Statistical Mathematics  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号