首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

2.
This paper discusses the circular version of list coloring of graphs. We give two definitions of the circular list chromatic number (or circular choosability) χc, l(G) of a graph G and prove that they are equivalent. Then we prove that for any graph G, χc, l(G) ≥ χl(G) ? 1. Examples are given to show that this bound is sharp in the sense that for any ? 0, there is a graph G with χc, l(G) > χl(G) ? 1 + ?. It is also proved that k‐degenerate graphs G have χc, l(G) ≤ 2k. This bound is also sharp: for each ? < 0, there is a k‐degenerate graph G with χc, l(G) ≥ 2k ? ?. This shows that χc, l(G) could be arbitrarily larger than χl(G). Finally we prove that if G has maximum degree k, then χc, l(G) ≤ k + 1. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 210–218, 2005  相似文献   

3.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

4.
Baogang Xu 《Discrete Mathematics》2008,308(15):3134-3142
A circular-perfect graph is a graph of which each induced subgraph has the same circular chromatic number as its circular clique number. In this paper, (1) we prove a lower bound on the order of minimally circular-imperfect graphs, and characterize those that attain the bound; (2) we prove that if G is a claw-free minimally circular-imperfect graph such that ωc(G-x)>ω(G-x) for some xV(G), then G=K(2k+1)/2+x for an integer k; and (3) we also characterize all minimally circular-imperfect line graphs.  相似文献   

5.
Circular chromatic number, χc is a natural generalization of chromatic number. It is known that it is NP ‐hard to determine whether or not an arbitrary graph G satisfies χ(G)=χc(G). In this paper we prove that this problem is NP ‐hard even if the chromatic number of the graph is known. This answers a question of Xuding Zhu. Also we prove that for all positive integers k ≥ 2 and n ≥ 3, for a given graph G with χ(G) = n, it is NP ‐complete to verify if . © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 226–230, 2004  相似文献   

6.
Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r‐coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k‐choosable, then chcc(G)?k + 1 ? 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2‐choosable then chcc(G)?2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2‐choosable graphs which are not 2‐choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178‐197, 2011  相似文献   

7.
In the set of graphs of order n and chromatic number k the following partial order relation is defined. One says that a graph G is less than a graph H if ci(G) ≤ ci(H) holds for every i, kin and at least one inequality is strict, where ci(G) denotes the number of i‐color partitions of G. In this paper the first ? n/2 ? levels of the diagram of the partially ordered set of connected 3‐chromatic graphs of order n are described. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 210–222, 2003  相似文献   

8.
This paper designs a set of graph operations, and proves that for 2k/d<3, starting from Kk/d, by repeatedly applying these operations, one can construct all graphs G with c(G)k/d. Together with the result proved in [20], where a set of graph operations were designed to construct graphs G with c(G)k/d for k/d3, we have a complete analogue of Hajós' Theorem for the circular chromatic number. This research was partially supported by the National Science Council under grant NSC 89-2115-M-110-003  相似文献   

9.
Let G be a finite graph on the vertex set [d] = {1,…, d} with the edges e 1,…, e n and K[t] = K[t 1,…, t d ] the polynomial ring in d variables over a field K. The edge ring of G is the semigroup ring K[G] which is generated by those monomials t e  = t i t j such that e = {i, j} is an edge of G. Let K[x] = K[x 1,…, x n ] be the polynomial ring in n variables over K, and define the surjective homomorphism π: K[x] → K[G] by setting π(x i ) = t e i for i = 1,…, n. The toric ideal I G of G is the kernel of π. It will be proved that, given integers f and d with 6 ≤ f ≤ d, there exists a finite connected nonbipartite graph G on [d] together with a reverse lexicographic order <rev on K[x] and a lexicographic order <lex on K[x] such that (i) K[G] is normal with Krull-dim K[G] = d, (ii) depth K[x]/in<rev (I G ) = f and K[x]/in<lex (I G ) is Cohen–Macaulay, where in<rev (I G ) (resp., in<lex (I G )) is the initial ideal of I G with respect to <rev (resp., <lex) and where depth K[x]/in<rev (I G ) is the depth of K[x]/in<rev (I G ).  相似文献   

10.
It was proved by Hell and Zhu that, if G is a series‐parallel graph of girth at least 2⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). In this article, we prove that the girth requirement is sharp, i.e., for any k ≥ 2, there is a series‐parallel graph G of girth 2⌊(3k − 1)/2⌋ − 1 such that χc(G) > 4k/(2k − 1). © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 185–198, 2000  相似文献   

11.
Let G be a k-connected graph of order n. For an independent set c, let d(S) be the number of vertices adjacent to at least one vertex of S and > let i(S) be the number of vertices adjacent to at least |S| vertices of S. We prove that if there exists some s, 1 ≤ s ≤ k, such that ΣxiEX d(X\{Xi}) > s(n?1) – k[s/2] – i(X)[(s?1)/2] holds for every independetn set X ={x0, x1 ?xs} of s + 1 vertices, then G is hamiltonian. Several known results, including Fraisse's sufficient condition for hamiltonian graphs, are dervied as corollaries.  相似文献   

12.
Given a “forbidden graph” F and an integer k, an F‐avoiding k‐coloring of a graph G is a k‐coloring of the vertices of G such that no maximal F‐free subgraph of G is monochromatic. The F‐avoiding chromatic number acF(G) is the smallest integer k such that G is F‐avoiding k‐colorable. In this paper, we will give a complete answer to the following question: for which graph F, does there exist a constant C, depending only on F, such that acF(G) ? C for any graph G? For those graphs F with unbounded avoiding chromatic number, upper bounds for acF(G) in terms of various invariants of G are also given. Particularly, we prove that ${{ac}}_{{{F}}}({{G}})\le {{2}}\lceil\sqrt{{{n}}}\rceil+{{1}}Given a “forbidden graph” F and an integer k, an F‐avoiding k‐coloring of a graph G is a k‐coloring of the vertices of G such that no maximal F‐free subgraph of G is monochromatic. The F‐avoiding chromatic number acF(G) is the smallest integer k such that G is F‐avoiding k‐colorable. In this paper, we will give a complete answer to the following question: for which graph F, does there exist a constant C, depending only on F, such that acF(G) ? C for any graph G? For those graphs F with unbounded avoiding chromatic number, upper bounds for acF(G) in terms of various invariants of G are also given. Particularly, we prove that ${{ac}}_{{{F}}}({{G}})\le {{2}}\lceil\sqrt{{{n}}}\rceil+{{1}}$, where n is the order of G and F is not Kk or $\overline{{{K}}_{{{k}}}}$. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 300–310, 2010  相似文献   

13.
The tree partition number of an r‐edge‐colored graph G, denoted by tr(G), is the minimum number k such that whenever the edges of G are colored with r colors, the vertices of G can be covered by at most k vertex‐disjoint monochromatic trees. We determine t2(K(n1, n2,…, nk)) of the complete k‐partite graph K(n1, n2,…, nk). In particular, we prove that t2(K(n, m)) = ? (m‐2)/2n? + 2, where 1 ≤ nm. © 2004 Wiley Periodicals, Inc. J Graph Theory 48: 133–141, 2005  相似文献   

14.
This paper proves that if G is a graph (parallel edges allowed) of maximum degree 3, then χ′c(G) ≤ 11/3 provided that G does not contain H1 or H2 as a subgraph, where H1 and H2 are obtained by subdividing one edge of K (the graph with three parallel edges between two vertices) and K4, respectively. As χ′c(H1) = χ′c(H2) = 4, our result implies that there is no graph G with 11/3 < χ′c(G) < 4. It also implies that if G is a 2‐edge connected cubic graph, then χ′c(G) ≤ 11/3. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 325–335, 2005  相似文献   

15.
Let c be a proper k-coloring of a connected graph G and Π=(C1,C2,…,Ck) be an ordered partition of V(G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple cΠ(v):=(d(v,C1),d(v,C2),…,d(v,Ck)), where d(v,Ci)=min{d(v,x)|xCi},1≤ik. If distinct vertices have distinct color codes, then c is called a locating coloring. The minimum number of colors needed in a locating coloring of G is the locating chromatic number of G, denoted by χL(G). In this paper, we study the locating chromatic number of Kneser graphs. First, among some other results, we show that χL(KG(n,2))=n−1 for all n≥5. Then, we prove that χL(KG(n,k))≤n−1, when nk2. Moreover, we present some bounds for the locating chromatic number of odd graphs.  相似文献   

16.
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G and is denoted by χ=*(G). In this paper, we investigate the asymptotic behavior of these coloring parameters in the probability space G(n,p) of random graphs. We prove that if n?1/5+? < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) = (1 + o(1))χ(G(n,p)) holds (where χ(G(n,p)) is the ordinary chromatic number of G(n,p)). We also show that there exists a constant C such that if C/n < p < 0.99, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) ≤ (2 + o(1))χ(G(n,p)). Concerning the equitable chromatic threshold, we prove that if n?(1??) < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=* (G(n,p)) ≤ (2 + o(1))χ(G(n,p)) holds, and if < p < 0.99 for some 0 < ?, then almost surely we have χ(G(n,p)) ≤ χ=*(G(n,p)) = O?(χ(G(n,p))). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

17.
In this paper, we prove the semi‐circular law for the eigenvalues of regular random graph Gn,d in the case d, complementing a previous result of McKay for fixed d. We also obtain a upper bound on the infinity norm of eigenvectors of Erd?s–Rényi random graph G(n,p), answering a question raised by Dekel–Lee–Linial. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2012  相似文献   

18.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

19.
It is well known that a graph G of order p ≥ 3 is Hamilton-connected if d(u) + d(v) ≥ p + 1 for each pair of nonadjacent vertices u and v. In this paper we consider connected graphs G of order at least 3 for which d(u) + d(v) ≥ |N(u) ∪ N(v) ∪ N(w)| + 1 for any path uwv with uvE(G), where N(x) denote the neighborhood of a vertex x. We prove that a graph G satisfying this condition has the following properties: (a) For each pair of nonadjacent vertices x, y of G and for each integer k, d(x, y) ≤ k ≤ |V(G)| − 1, there is an xy path of length k. (b) For each edge xy of G and for each integer k (excepting maybe one k η {3,4}) there is a cycle of length k containing xy. Consequently G is panconnected (and also edge pancyclic) if and only if each edge of G belongs to a triangle and a quadrangle. Our results imply some results of Williamson, Faudree, and Schelp. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The strong chromatic index of a graph G, denoted sq(G), is the minimum number of parts needed to partition the edges of G into induced matchings. For 0 ≤ klm, the subset graph Sm(k, l) is a bipartite graph whose vertices are the k- and l-subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. We show that and that this number satisfies the strong chromatic index conjecture by Brualdi and Quinn for bipartite graphs. Further, we demonstrate that the conjecture is also valid for a more general family of bipartite graphs. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号