首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
How well do multisymplectic discretisations preserve travelling wave solutions? To answer this question, the 5-point central difference scheme is applied to the semi-linear wave equation. A travelling wave ansatz leads to an ordinary difference equation whose solutions can be compared to travelling wave solutions of the PDE. For a discontinuous nonlinearity the difference equation is solved exactly. For continuous nonlinearities the difference equation is solved using a Fourier series, and resonances that depend on the grid-size are revealed for a smooth nonlinearity. In general, the infinite dimensional functional equation, which must be solved to get the travelling wave solutions, is intractable, but backward error analysis proves to be a powerful tool, as it provides a way to study the solutions of equation through a simple ODE that describes the behavior to arbitrarily high order. A general framework for using backward error analysis to analyze preservation of travelling waves for other equations and discretisations is presented. Then, the advantages that multisymplectic methods have over other methods are briefly highlighted.  相似文献   

2.
The hyperbolic function method for nonlinear wave equations is presented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Gr?bner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.  相似文献   

3.
This paper carries out the integration of a few nonlinear wave equations to obtain topological as well as non-topological soliton solutions. The mathematical techniques used to obtain the soliton solutions are He’s variational iteration method, the tanh method and the ansatz method. The nonlinear wave equations that are studied are coupled mKdV equations, Drinfeld-Sokolov equation and its generalized version. Finally, some numerical simulations are given to support the analytical solutions.  相似文献   

4.
We discuss traveling wave solutions to the Yukawa equations, a system of nonlinear partial differential equations which has applications to meson–nucleon interactions. The Yukawa equations are converted to a six-dimensional dynamical system, which is then studied for various values of the wave speed and mass parameter. The stability of the solutions is discussed, and the methods of competitive modes is used to describe parameter regimes for which chaotic behaviors may appear. Numerical solutions are employed to better demonstrate the dependence of traveling wave solutions on the physical parameters in the Yukawa model. We find a variety of interesting behaviors in the system, a few of which we demonstrate graphically, which depend upon the relative strength of the mass parameter to the wave speed as well as the initial data.  相似文献   

5.
The periodic wave solutions and the corresponding solitary solutions for the shallow water equations and the generalized Klein–Gordon equation are obtained by means of mapping method. The solutions obtained in this paper include as well the shock wave solution, complex line period, complex line soliton and rational solutions. Moreover, the obtained solutions are degenerated in terms of hyperbolic function solutions and trigonometric function solutions when the modulus m of the Jacobi elliptic function is driven to 1 and 0, respectively. The previously known periodic and solitary wave solutions are recovered. Many new results are presented.  相似文献   

6.
By using methods from dynamical systems theory, this paper researches the bifurcation and exact travelling wave solutions for the modified Benjamin-Bona-Mahoney (mBBM) equation. Implicit exact parametric representations of all travelling wave solutions as well as some explicit analytic solutions are given. Specially, breaking wave solutions are obtained, which KdV equation does not include.  相似文献   

7.
The Auxiliary equation method is used to find analytic solutions for the Kawahara and modified Kawahara equations. It is well known that different types of exact solutions of the given auxiliary equation produce new types of exact travelling wave solutions to nonlinear equations. In this paper, new exact solutions of the auxiliary equation are presented. Using these solutions, many new exact travelling wave solutions for the Kawahara type equations are obtained.  相似文献   

8.
In this paper, we study periodic wave solutions of a Fujimoto--Watanabe equation by exploiting the bifurcation method of dynamical systems. We obtain all possible bifurcations of phase portraits of the system in different regions of the parametric space, and then give the sufficient conditions to guarantee the existence of several types of periodic wave solutions. What"s more, we present their exact expressions and reveal their inside relations as well as their relations with solitary wave solutions.  相似文献   

9.
By using the method of planar dynamical systems to an integrable nonlinear wave equation, the existence of periodic travelling wave, solitary wave and kink wave solutions is proved in the different parametric conditions. The phase portraits of the travelling wave system are given. It can be shown that the existence of singular curves in the travelling wave system is the reason why the travelling wave solutions lose their smoothness. Moreover, the so-called W/M-shaped solitary wave solutions are obtained.  相似文献   

10.
We investigate a generalized (3 + 1)-dimensional nonlinear wave equation, which can be used to depict many nonlinear phenomena in liquid containing gas bubbles. By employing the Hirota bilinear method, we derive its bilinear formalism and soliton solutions succinctly. Meanwhile, the first-order lump wave solution and second-order lump wave solution are well presented based on the corresponding two-soliton solution and four-soliton solution. Furthermore, two types of hybrid solutions are systematically established by using the long wave limit method. Finally, the graphical analyses of the obtained solutions are represented in order to better understand their dynamical behaviors.  相似文献   

11.
The method of bifurcation of planar dynamical systems and method of numerical simulation of differential equations are employed to investigate the modified dispersive water wave equation. We obtain the parameter bifurcation sets that divide the parameter space into different regions which correspond to qualitatively different phase portraits. In different regions, different types of travelling solutions including solitary wave solutions, shock wave solutions and periodic wave solutions are simulated. Furthermore, with a generalized projective Riccati equation method, several new explicit exact solutions are obtained.  相似文献   

12.
We consider the new mathematical scenarios in the framework of the Fractional Calculus. In this context, we study the generalized fractional virial theorem as well as the fractional plane wave solutions and the fractional dispersion relations for the fractional wave equation.  相似文献   

13.
In this paper, for compound KdV equation, four new solitary wave solutions in the form of hyperbolic secant function and six periodic wave solutions in the form of cosine function are obtained by using undetermined coefficient method. On three different layers, the velocity interval which ensures that bell-shaped solitary wave solutions and periodic wave solutions exist synchronously is obtained, respectively. The length of the interval is related to coefficients of the two nonlinear terms.  相似文献   

14.
This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Long-Short wave equations $\left\{\begin{array}{l}i\varepsilon_{t}+\varepsilon_{xx}=n\varepsilon+\alpha|\varepsilon|^{2}\varepsilon,\\n_{t}=(|\varepsilon|^{2})_{x}, x\in R.\end{array} \right.$ Firstly, we show that there exist a smooth curve of positive traveling wave solutions of dnoidal type with a fixed fundamental period $L$ for the generalized Long-Short wave equations. Then, combining the classical method proposed by Benjamin, Bona et al., and detailed spectral analysis given by using Lame equation and Floquet theory, we show that the dnoidal type periodic wave solution is orbitally stable by perturbations with period $L$. As the modulus of the Jacobian elliptic function $k\rightarrow 1$, we obtain the orbital stability results of solitary wave solution with zero asymptotic value for the generalized Long-Short equations. In particular, as $\alpha=0$, we can also obtain the orbital stability results of periodic wave solutions and solitary wave solutions for the long-short wave resonance equations. The results in the present paper improve and extend the previous stability results of long-shore wave equations and its extension equations.  相似文献   

15.
Exact solutions are derived for an n-dimensional radial wave equation with a general power nonlinearity. The method, which is applicable more generally to other nonlinear PDEs, involves an ansatz technique to solve a first-order PDE system of group-invariant variables given by group foliations of the wave equation, using the one-dimensional admitted point symmetry groups. (These groups comprise scalings and time translations, admitted for any nonlinearity power, in addition to space-time inversions admitted for a particular conformal nonlinearity power.) This is shown to yield not only group-invariant solutions as derived by standard symmetry reduction, but also other exact solutions of a more general form. In particular, solutions with interesting analytical behavior connected with blow-ups as well as static monopoles are obtained.  相似文献   

16.
New exact solutions including homoclinic wave and periodic wave solutions for the 2D Ginzburg-Landau equation are obtained using the auxiliary function method and the -expansion method, respectively. The solutions are expressed by the hyperbolic functions and the trigonometric functions. There result shows that there exists a kink wave solution which tends to one and the same periodic wave solution as time tends to infinite.  相似文献   

17.
《Mathematische Nachrichten》2017,290(14-15):2401-2412
Of concern is a wave equation with a distributed neutral delay. We prove that, despite the destructive nature of delays in general, solutions may go back to the equilibrium state in an exponential manner as time goes to infinity. Reasonable conditions on the distributed neutral delay are established. This type of problems appear in the study of wave propagation in viscoelastic media and in acoustic wave propagation. It is not well studied so far.  相似文献   

18.
Utilizing the methods of dynamical system theory, the Dullin-Gottwald-Holm equation is studied in this paper. The dynamical behaviors of the traveling wave solutions and their bifurcations are presented in different parameter regions. Furthermore, the exact explicit forms of all possible bounded solutions, such as solitary wave solutions, periodic wave solutions and breaking loop wave solutions are obtained.  相似文献   

19.
The nonlinear ion-acoustic oscillations models are governed by three partial differential equation systems. Their travelling wave equations are three first class singular traveling wave systems depending on different parameter groups, respectively. By using the method of dynamical system and the theory of singular traveling wave systems, in this paper, it is shown that there exist parameter groups such that these singular systems have solitary wave solutions, pseudo-peakons, periodic peakons and compactons as well as kink and anti-kink wave solutions. The results of this paper complete the studies of three papers [5,13] and [14].  相似文献   

20.
We introduce a method, constructed such that numerical solutions of the wave equation are well behaved when the solutions also contain discontinuities. The wave equation serves as a model problem for the Euler equations when the solution contains a contact discontinuity. Numerical computations of linear equations and the Euler equations in one and two dimensions are presented. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 353–365, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号