首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, we propose a new high accuracy numerical method of O(k2 + k2h2 + h4) based on off-step discretization for the solution of 3-space dimensional non-linear wave equation of the form utt = A(x,y,z,t)uxx + B(x,y,z,t)uyy + C(x,y,z,t)uzz + g(x,y,z,t,u,ux,uy,uz,ut), 0 < x,y,z < 1,t > 0 subject to given appropriate initial and Dirichlet boundary conditions, where k > 0 and h > 0 are mesh sizes in time and space directions respectively. We use only seven evaluations of the function g as compared to nine evaluations of the same function discussed in  and . We describe the derivation procedure in details of the algorithm. The proposed numerical algorithm is directly applicable to wave equation in polar coordinates and we do not require any fictitious points to discretize the differential equation. The proposed method when applied to a telegraphic equation is also shown to be unconditionally stable. Comparative numerical results are provided to justify the usefulness of the proposed method.  相似文献   

2.
In this paper, we consider the problem of finding u = u(xyt) and p = p(t) which satisfy ut = uxx + uyy + p(t)u + ? in R × [0, T], u(xy, 0) = f(xy), (xy) ∈ R = [0, 1] × [0, 1], u is known on the boundary of R and u(xyt) = E(t), 0 < t ? T, where E(t) is known and (xy) is a given point of R. Through a function transformation, the nonlinear two-dimensional diffusion problem is transformed into a linear problem, and a backward Euler scheme is constructed. It is proved by the maximum principle that the scheme is uniquely solvable, unconditionally stable and convergent in L norm. The convergence orders of u and p are of O(τ + h2). The impact of initial data errors on the numerical solution is also considered. Numerical experiments are presented to illustrate the validity of the theoretical results.  相似文献   

3.
The functional equation f(xy)=f(x)g(y)+g(x)f(y)+h(x)h(y) is solved where f, g, h are complex functions defined on a group.  相似文献   

4.
For a prescribed real number s ∈ [1, 2), we give some sufficient conditions on the coefficients p(x) and q(x) such that every solution y = y(x), y ∈ C2((0, T]) of the linear differential equation (p(x)y′)′ + q(x)y = 0 on (0, T], is bounded and fractal oscillatory near x = 0 with the fractal dimension equal to s. This means that y oscillates near x = 0 and the fractal (box-counting) dimension of the graph Γ(y) of y is equal to s as well as the s dimensional upper Minkowski content (generalized length) of Γ(y) is finite and strictly positive. It verifies that y admits similar kind of the fractal geometric asymptotic behaviour near x = 0 like the chirp function ych(x) = a(x)S(φ(x)), which often occurs in the time-frequency analysis and its various applications. Furthermore, this kind of oscillations is established for the Bessel, chirp and other types of damped linear differential equations given in the form y″ + (μ/x)y′ + g(x)y = 0, x ∈ (0, T]. In order to prove the main results, we state a new criterion for fractal oscillations near x = 0 of real continuous functions which essentially improves related one presented in [1].  相似文献   

5.
Let X be a linear space over a commutative field K. We characterize a general solution f,g,h,k:XK of the pexiderized Go?a?b-Schinzel equation f(x+g(x)y)=h(x)k(y), as well as real continuous solutions of the equation.  相似文献   

6.
In this paper we study the maximum-minimum value of polynomials over the integer ring Z. In particular, we prove the following: Let F(x,y) be a polynomial over Z. Then, maxxZ(T)minyZ|F(x,y)|=o(T1/2) as T→∞ if and only if there is a positive integer B such that maxxZminyZ|F(x,y)|?B. We then apply these results to exponential diophantine equations and obtain that: Let f(x,y), g(x,y) and G(x,y) be polynomials over Q, G(x,y)∈(Q[x,y]−Q[x])∪Q, and b a positive integer. For every α in Z, there is a y in Z such that f(α,y)+g(α,y)bG(α,y)=0 if and only if for every integer α there exists an h(x)∈Q[x] such that f(x,h(x))+g(x,h(x))bG(x,h(x))≡0, and h(α)∈Z.  相似文献   

7.
The gamma class Γ α (g) consists of positive and measurable functions that satisfy f(x+yg(x))/f(x)→exp(αy). In most cases, the auxiliary function g is Beurling varying, i.e. g(x)/x→0 and g∈Γ0(g). Taking h=logf, we find that hEΓ α (g,1), where EΓ α (g,a) is the class of ultimately positive and measurable functions that satisfy (f(x+yg(x))?f(x))/a(x)→αy. In this paper, we discuss local uniform convergence for functions in the classes Γ α (g) and EΓ α (g,a). From this we obtain several representation theorems. We also prove some higher order relations for functions in the classes Γ α (g) and EΓ α (g,a). Some applications conclude the paper.  相似文献   

8.
The functional equationf(x,y)+g(x)h(y)F(u/1?x,ν/1?y)=f(u,ν)+g(u)h(ν)F(x/1?u,y/1?ν) ... (1) forx, y, u, ν ∈ [0, 1) andx+u,y+ν ∈ [0,1) whereg andh satisfy the functional equationφ (x+y?xy)=φ(x)φ(y)... (2) has been solved for some non-constant solution of (2) in [0, 1] withφ (0)=1,φ(1)=0 and the solution is used in characterising some measures of information.  相似文献   

9.
In this paper, the boundedness of all solutions of the nonlinear equation (?p(x′))′+(p-1)[α?p(x+)−β?p(x)]+f(x)+g(x)=e(t) is discussed, where e(t)∈C7 is 2πp-periodic, f,g are bounded C6 functions, ?p(u)=∣u∣p−2u, p?2,α,β are positive constants, x+=max{x,0},x=max{−x,0}.  相似文献   

10.
Let Fn be a binary form with integral coefficients of degree n?2, let d denote the greatest common divisor of all non-zero coefficients of Fn, and let h?2 be an integer. We prove that if d=1 then the Thue equation (T) Fn(x,y)=h has relatively few solutions: if A is a subset of the set T(Fn,h) of all solutions to (T), with r:=card(A)?n+1, then
(#)
h divides the numberΔ(A):=1?k<l?rδ(ξk,ξl),
where ξk=〈xk,yk〉∈A, 1?k?r, and δ(ξk,ξl)=xkylxlyk. As a corollary we obtain that if h is a prime number then, under weak assumptions on Fn, there is a partition of T(Fn,h) into at most n subsets maximal with respect to condition (#).  相似文献   

11.
The finite generators of Abelian integral are obtained, where Γh is a family of closed ovals defined by H(x,y)=x2+y2+ax4+bx2y2+cy4=h, hΣ, ac(4acb2)≠0, Σ=(0,h1) is the open interval on which Γh is defined, f(x,y), g(x,y) are real polynomials in x and y with degree 2n+1 (n?2). And an upper bound of the number of zeros of Abelian integral I(h) is given by its algebraic structure for a special case a>0, b=0, c=1.  相似文献   

12.
The Barnes’ G-function G(x) = 1/Γ2, satisfies the functional equation logG(x + 1) − logG(x) = logΓ(x). We complement W. Krull’s work in Bemerkungen zur Differenzengleichung g(x + 1) − g(x) = φ(x), Math. Nachrichten 1 (1948), 365-376 with additional results that yield a different characterization of the function G, new expansions and sharp bounds for G on x > 0 in terms of Gamma and Digamma functions, a new expansion for the Gamma function and summation formulae with Polygamma functions.  相似文献   

13.
In this paper, we are concerned with the boundedness of all the solutions and the existence of quasiperiodic solutions for some Duffing equations , where e(t) is of period 1, and g : R → R possesses the characters: g(x) is superlinear when x ? d0, d0 is a positive constant and g(x) is semilinear when x ? 0.  相似文献   

14.
In this paper we will prove the pointwise convergence of L(fxyλ) to f(x0y0), as (xyλ) tends to (x0y0λ0) in the space L2π, by the three parameter family of singular operators. In contrast to previous works, the kernel function is radial.  相似文献   

15.
In this paper, a class of multiobjective control problems is considered, where the objective and constraint functions involved are f(tx(t), ?(t), y(t), z(t)) with x(t) ∈ Rn, y(t) ∈ Rn, and z(t) ∈ Rm, where x(t) and z(t) are the control variables and y(t) is the state variable. Under the assumption of invexity and its generalization, duality theorems are proved through a parametric approach to related properly efficient solutions of the primal and dual problems.  相似文献   

16.
We would like to investigate on the solution to the automatic control problem given by the differential equation y′(t) = f(ty(t), w(t)) for a given initial function x in the initial domain D(x, ω, Y) for almost all t in the interval I, with controls given by w(t) = g(ty(t), T(y)(t)), where T is a nonanticipating and Lipschitzian operator. The result will be generalized for a dynamical system y′(t) = f(ty(t), T(y), u(t)).  相似文献   

17.
18.
We show that if F, X are two locally convex spaces and h: F → R?, ?: F × X → R are two convex functionals satisfying h(y) = ?(y, x0) (y?F) for some x0?X, then, under suitable assumptions, the computation of inf h(F) can be reduced to the computation of inf ?(H) on certain hyperplanes H of F × X. We give some applications.  相似文献   

19.
We determine the general solution of the functional equation f(x + ky) + f(x-ky) = g(x + y) + g(x-y) + h(x) + h(y) for fixed integers with k ≠ 0; ±1 without assuming any regularity conditions for the unknown functions f, g, h, and0020[(h)\tilde] \tilde{h} . The method used for solving these functional equations is elementary but it exploits an important result due to Hosszú. The solution of this functional equation can also be obtained in groups of certain type by using two important results due to Székelyhidi.  相似文献   

20.
We consider an inverse problem for identifying a leading coefficient α(x) in −(α(x)y′(x))′ + q(x)y(x) = H(x), which is known as an inverse coefficient problem for the Sturm-Liouville operator. We transform y(x) to u(xt) =  (1 + t)y(x) and derive a parabolic type PDE in a fictitious time domain of t. Then we develop a Lie-group adaptive method (LGAM) to find the coefficient function α(x). When α(x) is a continuous function of x, we can identify it very well, by giving boundary data of y, y′ and α. The efficiency of LGAM is confirmed by comparing the numerical results with exact solutions. Although the data used in the identification are limited, we can provide a rather accurate solution of α(x).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号