首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Considering a two‐dimensional singularly perturbed convection–diffusion problem with exponential boundary layers, we analyze the local discontinuous Galerkin (DG) method that uses piecewise bilinear polynomials on Shishkin mesh. A convergence rate O(N‐1 lnN) in a DG‐norm is established under the regularity assumptions, while the total number of mesh points is O(N2). The rate of convergence is uniformly valid with respect to the singular perturbation parameter ε. Numerical experiments indicate that the theoretical error estimate is sharp. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

2.
We consider a coupled system of first-order singularly perturbed quasilinear differential equations with given initial conditions. The leading term of each equation is multiplied by a distinct small positive parameter, which induces overlapping layers. The quasilinear system is discretized by using first and second order accurate finite difference schemes for which we derive general error estimates in the discrete maximum norm. As consequences of these error estimates we establish nodal convergence of O((N ?1 lnN) p ),p=1,2, on the Shishkin mesh and O(N ?p ),p=1,2, on the Bakhvalov mesh, where N is the number of mesh intervals and the convergence is robust in all of the parameters. Numerical computations are included which confirm the theoretical results.  相似文献   

3.
A mixed boundary value problem for a singularly perturbed elliptic convection-diffusion equation with constant coefficients in a square domain is considered. Dirichlet conditions are specified on two sides orthogonal to the flow, and Neumann conditions are set on the other two sides. The right-hand side and the boundary functions are assumed to be sufficiently smooth, which ensures the required smoothness of the desired solution in the domain, except for neighborhoods of the corner points. Only zero-order compatibility conditions are assumed to hold at the corner points. The problem is solved numerically by applying an inhomogeneous monotone difference scheme on a rectangular piecewise uniform Shishkin mesh. The inhomogeneity of the scheme lies in that the approximating difference equations are not identical at different grid nodes but depend on the perturbation parameter. Under the assumptions made, the numerical solution is proved to converge ?-uniformly to the exact solution in a discrete uniform metric at an O(N ?3/2ln2 N) rate, where N is the number of grid nodes in each coordinate direction.  相似文献   

4.
5.
The Dirichlet problem for a singularly perturbed ordinary differential convection-diffusion equation with a small parameter ? (? ?? (0, 1]) multiplying the higher order derivative is considered. For the problem, a difference scheme on locally uniform meshes is constructed that converges in the maximum norm conditionally, i.e., depending on the relation between the parameter ? and the value N defining the number of nodes in the mesh used; in particular, the scheme converges almost ?-uniformly (i.e., its accuracy depends weakly on ?). The stability of the scheme with respect to perturbations in the data and its conditioning are analyzed. The scheme is constructed using classical monotone approximations of the boundary value problem on a priori adapted grids, which are uniform on subdomains where the solution is improved. The boundaries of these subdomains are determined by a majorant of the singular component of the discrete solution. On locally uniform meshes, the difference scheme converges at a rate of O(min[??1 N ?K lnN, 1] + N ?1lnN), where K is a prescribed number of iterations for refining the discrete solution. The scheme converges almost ?-uniformly at a rate of O(N ?1lnN) if N ?1 ?? ???, where ?? (the defect of ?-uniform convergence) determines the required number K of iterations (K = K(??) ?? ???1) and can be chosen arbitrarily small from the half-open interval (0, 1]. The condition number of the difference scheme satisfies the bound ?? P = O(??1/K ln1/K ??1???(K + 1)/K ), where ?? is the accuracy of the solution of the scheme in the maximum norm in the absence of perturbations. For sufficiently large K, the scheme is almost ?-uniformly strongly stable.  相似文献   

6.
Two locking-free nonconforming finite elements are presented for three-dimensional elasticity problem with pure displacement boundary condition. Convergence rate of the elements are uniformly optimal with respect to λ. The energy norm and L2 norm errors are O(h2) and O(h3), respectively. Lastly, a numerical experiment is carried out, which coincides with the theoretical analysis.  相似文献   

7.
A mixed boundary value problem for a singularly perturbed reaction-diffusion equation in a square is considered. A Neumann condition is specified on one side of the square, and a Dirichlet condition is set on the other three. It is assumed that the coefficient of the equation, its right-hand side, and the boundary values of the desired solution or its normal derivative on the sides of the square are smooth enough to ensure the required smoothness of the solution in a closed domain outside the neighborhoods of the corner points. No compatibility conditions are assumed to hold at the corner points. Under these assumptions, the desired solution in the entire closed domain is of limited smoothness: it belongs only to the Hölder class C μ, where μ ∈ (0, 1) is arbitrary. In the domain, a nonuniform rectangular mesh is introduced that is refined in the boundary domain and depends on a small parameter. The numerical solution to the problem is based on the classical five-point approximation of the equation and a four-point approximation of the Neumann boundary condition. A mesh refinement rule is described under which the approximate solution converges to the exact one uniformly with respect to the small parameter in the L h norm. The convergence rate is O(N ?2ln2 N), where N is the number of mesh nodes in each coordinate direction. The parameter-uniform convergence of difference schemes for mixed problems without compatibility conditions at corner points was not previously analyzed.  相似文献   

8.
A numerical study is made for solving a class of time-dependent singularly perturbed convection–diffusion problems with retarded terms which often arise in computational neuroscience. To approximate the retarded terms, a Taylor’s series expansion has been used and the resulting time-dependent singularly perturbed differential equation is approximated using parameter-uniform numerical methods comprised of a standard implicit finite difference scheme to discretize in the temporal direction on a uniform mesh by means of Rothe’s method and a B-spline collocation method in the spatial direction on a piecewise-uniform mesh of Shishkin type. The method is shown to be accurate of order O(M−1 + N−2 ln3N), where M and N are the number of mesh points used in the temporal direction and in the spatial direction respectively. An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations. Comparisons of the numerical solutions are performed with an upwind and midpoint upwind finite difference scheme on a piecewise-uniform mesh to demonstrate the efficiency of the method.  相似文献   

9.
We study an initial-boundary value problem for a singularly perturbed one-dimensional heat equation on an interval. At the corner points, the input data are subjected to continuity conditions only, which violates the smoothness of the derivatives of the solution in neighborhoods of these points, starting from the derivatives occurring in the equation. To approximate the problem, we use the implicit four-point difference scheme on a Shishkin grid uniform with respect to time and piecewise uniform with respect to the space variable. We prove that the grid solution error is O(τ +N ?2 ln2 N) ln(j +1) uniformly with respect to the parameter, where τ is the grid increment with respect to the time variable, j is the index of the time layer, and N is the number of nodes in the piecewise uniform space grid.  相似文献   

10.
Here nonsmooth solutions of a differential equation are treated as solutions for which the compatibility conditions are not required to hold at the corner points of the domain and hence corner singularities can occur. In the present paper, we drop the compatibility conditions at three of the four vertices of a rectangle. At the remaining vertex, from which a characteristic (inclined) of the reduced equation issues, we impose compatibility conditions providing the C 3,λ -smoothness of the desired solution in a neighborhood of that vertex as well as additional conditions leading to the smoothness of solutions of the reduced equation occurring in the regular component of the solution of the considered problem. Under our assumptions and for a sufficient smoothness of the coefficients of the equation and its right-hand side, we show that the classical five-point upwind approximation on a Shishkin piecewise uniform mesh preserves the accuracy specific for the smooth case; i.e., the mesh solution uniformly (with respect to a small parameter) converges in the L h -norm to the exact solution at the rate O(N −1 ln2 N), where N is the number of mesh nodes in each of the coordinate directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号