首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
The method of simplest equation is powerful tool for obtaining exact and approximate solutions of nonlinear PDEs. Here we extend the class of equations which can be treated by the method in such a way that the classes of equations considered in our previous work are particular cases of the extended class of equations. As examples for application of the methodology we obtain exact traveling-wave solutions of the generalized Degasperis–Processi equation and of the b-equation. As simplest equations we use the equations of Bernoulli and Riccati. We investigate the possibility for obtaining these solutions also by means of the exp-function method. This lead us to propose a generalized version of the exp-function method in Section 5.  相似文献   

2.
The modified method of simplest equation is powerful tool for obtaining exact and approximate solutions of nonlinear PDEs. These solutions are constructed on the basis of solutions of more simple equations called simplest equations. In this paper we study the role of the simplest equation for the application of the modified method of simplest equation. We follow the idea that each function constructed as polynomial of a solution of a simplest equation is a solution of a class of nonlinear PDEs. We discuss three simplest equations: the equations of Bernoulli and Riccati and the elliptic equation. The applied algorithm is as follows. First a polynomial function is constructed on the basis of a simplest equation. Then we find nonlinear ODEs that have the constructed function as a particular solution. Finally we obtain nonlinear PDEs that by means of the traveling-wave ansatz can be reduced to the above ODEs. By means of this algorithm we make a first step towards identification of the above-mentioned classes of nonlinear PDEs.  相似文献   

3.
We search for traveling-wave solutions of the class of PDEswhere Ap(Q),Br(Q),Cs(Q),Du(Q) and F(Q) are polynomials of Q. The basis of the investigation is a modification of the method of simplest equation. The equations of Bernoulli, Riccati and the extended tanh-function equation are used as simplest equations. The obtained general results are illustrated by obtaining exact solutions of versions of the generalized Kuramoto-Sivashinsky equation, reaction-diffusion equation with density-dependent diffusion, and the reaction-telegraph equation.  相似文献   

4.
In this paper, an extended simplest equation method is proposed to seek exact travelling wave solutions of nonlinear evolution equations. As applications, many new exact travelling wave solutions for several forms of the fifth-order KdV equation are obtained by using our method. The forms include the Lax, Sawada-Kotera, Sawada-Kotera-Parker-Dye, Caudrey-Dodd-Gibbon, Kaup-Kupershmidt, Kaup-Kupershmidt-Parker-Dye, and the Ito forms.  相似文献   

5.
Huiqun Zhang 《Acta Appl Math》2009,106(2):241-249
Sub-equation methods are used for constructing exact travelling wave solutions of nonlinear partial differential equations. The key idea of these methods is to take full advantage of all kinds of special solutions of sub-equation, which is usually a nonlinear ordinary differential equation. We present a function transformation which not only gives us a clear relation among these sub-equation methods, but also can be used to obtain the general solutions of these sub-equations. And then new exact travelling wave solutions of the CKdV-MKdV equation and the CKdV equations as applications of this transformation are obtained, and the approach presented in this paper can be also applied to other nonlinear partial differential equations.   相似文献   

6.
The extended homogeneous balance method is used to construct exact traveling wave solutions of a generalized Hirota–Satsuma coupled KdV equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many exact traveling wave solutions of a generalized Hirota–Satsuma coupled KdV equation are successfully obtained, which contain soliton-like and periodic-like solutions This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.  相似文献   

7.
It is known that the simplest equation method is applied for finding exact solutions of autonomous nonlinear differential equations. In this paper we extend this method for finding exact solutions of non-autonomous nonlinear differential equations (DEs). We applied the generalized approach to look for exact special solutions of three Painlevé equations. As ODE of lower order than Painlevé equations the Riccati equation is taken. The obtained exact special solutions are expressed in terms of the special functions defined by linear ODEs of the second order.  相似文献   

8.
The simplest equation method is a powerful solution method for obtaining exact solutions of nonlinear evolution equations.In this paper, the simplest equation method is used to construct exact solutions of nonlinear Schrödinger’s equation and perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity. It is shown that the proposed method is effective and general.  相似文献   

9.
The modified simple equation method is employed to find the exact solutions of the nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equation. When certain parameters of the equations are chosen to be special values, the solitary wave solutions are derived from the exact solutions. It is shown that the modified simple equation method provides an effective and powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.  相似文献   

10.
An existence result and a priori bound for the solution of a second-order nonlinear parabolic equation are established. Also a generalized tanh-function method is used for constructing exact travelling wave solutions for the nonlinear diffusion equation of Fisher type originated from the considered partial differential equation. And new multiple soliton solutions are obtained.  相似文献   

11.
12.
The repeated homogeneous balance is used to construct a new exact traveling wave solution of the Kadomtsev-Petviashvili (KP) like equation coupled to a Schrödinger equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions are successfully obtained, which contain rational and periodic-like solutions. This method is straightforward and concise, and it can be applied to other nonlinear evolution equations.  相似文献   

13.
In this paper, we adopt the Exp-function method and the traveling-wave transformation to study the so-called DGH equation, as a result a number of exact solutions of this equation have been found. The family of solution including some exact solutions such as solitary wave pattern, periodic traveling-wave solution, kink-wave solution and new bounded-wave solutions. And explained some of the solutions physical meaning.  相似文献   

14.
In this paper, a method with the aid of a sub-ODE and its solutions is used for constructing new periodic wave solutions for nonlinear Gardner equation and BBM equation with nonlinear terms of any order arising in mathematical physics. As a result, many exact traveling wave solutions are successfully obtained. The method in the paper is very direct and it can also be applied to other nonlinear evolution equations.  相似文献   

15.
This paper presents a new algebraic procedure to construct exact solutions of selected nonlinear differential-difference equations. The discrete sine-Gordon equation and differential-difference asymmetric Nizhnik-Novikov-Veselov equations are chosen as examples to illustrate the efficiency and effectiveness of the new procedure, where various types of exact travelling wave solutions for these nonlinear differential-difference equations have been constructed. It is anticipated that the new procedure can also be used to produce solutions for other nonlinear differential-difference equations.  相似文献   

16.
We make use of the homogeneous balance method and symbolic computation to construct new exact traveling wave solutions for the Benjamin-Bona-Mahoney (BBM) equation. Many new exact traveling wave solutions are successfully obtained, which contain rational and periodic-like solutions. This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.  相似文献   

17.
在本文中,一类新的矩阵型修正Korteweg-de Vries(简记为mmKdV)方程被首次通过RiemannHilbert方法研究,而且,这一方程可通过选取特殊的势矩阵来降阶为我们熟知的耦合型修正Kortewegde Vries方程.从方程对应的Lax对的谱分析入手,作者成功地建立了方程对应的Riemann-Hilbert问题.在无反射势的特殊条件下,mmKdV方程的精确解可由Riemann-Hilbert问题的解给出.而且,基于特殊势矩阵所对应的特殊对称性,作者可以对原有的孤子解进行分类,从而得到一些有趣的解的现象,比如呼吸孤子、钟形孤子等.  相似文献   

18.
讨论了带有热源项的非线性扩散方程.通过一种直接简洁的方法得到了几种精确解.该方法可用于更高阶演化方程的求解问题.  相似文献   

19.
Nonlinear diffusion equation with a polynomial source is considered. The Painlevé analysis of equation has been studied. Exact traveling wave solutions in the simplest cases have been found. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号