首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该文研究具有正负系数的非线性中立型脉冲时滞微分方程获得了该方程的每一个解当t→∞时趋于一个常数的充分条件.  相似文献   

2.
In this paper the initial-boundary-value problems for pseudo-hyperbolic system of quasi-linear equations: {(-1)^Mu_{tt} + A(x, t, U, V)u_x^{2M}_{tt} = B(x, t, U, V)u_x^{2M}_{t} + C(x, t, U, V)u_x^{2M} + f(x, t, U, V) u_x^k(0,t) = ψ_{0k}(t), \quad u_x^k(l,t) = ψ_{lk}(t), \quad k = 0,1,…,M - 1 -u(x,0) = φ_0(x), \quad u_t(x,0) = φ_1(x) is studied, where U = (u_1, u_x,…,u_x^{2M - 1}) V = (u_t, u_{xt},…,u_x^{2M - 1_t}), A, B, C are m × m matrices, u, f, ψ_{0k}, ψ_{1k}, ψ_0, ψ_1 are m-dimensional vector functions. The existence and uniqueness of the generalized solution (in H² (0, T; H^{2M} (0, 1))) of the problems are proved.  相似文献   

3.
In the present paper, by applying variant mountain pass theorem and Ekeland variational principle we study the existence of multiple nontrivial solutions for a class of Kirchhoff type problems with concave nonlinearity $$ \left\{\begin{array}{ll} -(a + b \int\nolimits_{\Omega} |\nabla{u}|^{2})\triangle{u} = \alpha(x)|u|^{q-2}u + f(x, u),\quad{\rm in}\;\Omega,\\ u = 0,\;\quad\qquad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad{\rm on}\;\partial\Omega, \end{array} \right. $$ A new existence theorem and an interesting corollary of four nontrivial solutions are obtained.  相似文献   

4.
We are concerned with existence, positivity property and long-time behavior of solutions to the following initial boundary value problem of a fourth order degenerate parabolic equation in higher space dimensions   相似文献   

5.
In this paper we prove existence and comparison results for nonlinear parabolic equations which are modeled on the problem
$\left\{{ll}{u_t - {\rm div}\,\left(\frac{1}{(1+|u|)^{\alpha}}|Du|^{p-2}Du\right) =f\quad\hskip 2pt \,\,{\rm in}\,\Omega\times(0,T),}\\ {u=0\qquad\qquad\qquad\qquad\quad\quad\qquad{\rm on}\,\partial\Omega\times(0,T),}\\ {u(x,0)=u_0(x)\quad\qquad\qquad\qquad\qquad{\rm in}\,\Omega,}\right.$\left\{\begin{array}{ll}{u_t - {\rm div}\,\left(\frac{1}{(1+|u|)^{\alpha}}|Du|^{p-2}Du\right) =f\quad\hskip 2pt \,\,{\rm in}\,\Omega\times(0,T),}\\ {u=0\qquad\qquad\qquad\qquad\quad\quad\qquad{\rm on}\,\partial\Omega\times(0,T),}\\ {u(x,0)=u_0(x)\quad\qquad\qquad\qquad\qquad{\rm in}\,\Omega,}\end{array}\right.  相似文献   

6.
Fujita exponents for evolution problems with nonlocal diffusion   总被引:1,自引:0,他引:1  
We prove the existence of a critical exponent of Fujita type for the nonlocal diffusion problem
$\left\{{l@{\quad}l}u_t(x, t) = J*u(x, t)-u(x, t) + u^p(x, t), & \qquad x \in \mathbb{R}^N,\; t > 0,\\ u(x, 0) = u_0(x), & \qquad x \in\mathbb{R}^N,\right.$\left\{\begin{array}{l@{\quad}l}u_t(x, t) = J*u(x, t)-u(x, t) + u^p(x, t), & \qquad x \in \mathbb{R}^N,\; t > 0,\\ u(x, 0) = u_0(x), & \qquad x \in\mathbb{R}^N,\end{array}\right.  相似文献   

7.
We deal with the following parabolic problem, $$(P)\left\{\begin{array}{lll} u_t - \Delta{u} + |\nabla{u}|^q \quad=\quad \lambda{g}(x)u + f(x, t),\quad u > 0 \; {\rm in} \; \Omega \; \times \; (0, T),\\ \qquad\quad\quad\; u(x, t) \quad=\quad 0 \quad{\rm on}\; {\partial}{\Omega}\; \times ; (0, T),\\ \qquad\quad\quad\; u(x, 0) \quad=\quad u_{0}(x), \quad x \in {\Omega},\end{array}\right.$$ where is a bounded regular domain or ${\Omega = \mathbb{R}^N}$ , ${1 < q \leq 2, \lambda > 0\; {\rm and}\; f \geq 0, u_{0} \geq 0}$ are in a suitable class of functions. We give assumptions on g with respect to q for which for all λ >  0 and all ${f \in L^1(\Omega_T ), f \geq 0}$ , problem (P) has a positive solution. Under some additional conditions on the data, the Cauchy problem and the asymptotic behavior of the solution are also considered.  相似文献   

8.
In this paper, we obtain the existence of positive solution of {-Δu = b(x)(u - λ)^p_+,\qquad x ∈ R^N λ > 0, |∇ u| ∈ L² (R^N),\qquad u ∈ L\frac{2N}{N-2} (R^N) under the assumptions that 1 < p < \frac{N+2}{N-2}, N ≥ 3, b(x) satisfies b(x) ∈ C(R^N), b(x) > 0 in R^N b(x) →_{|x|→∞}b^∞ and b(x) > \frac{4}{p+3}b^∞ for x ∈ R^N  相似文献   

9.
We consider the nonlinear delay differential evolution equation $$\left\{\begin{array}{ll} u'(t) \in Au(t) + f(t, u_t), \quad \quad t \in \mathbb{R}_+,\\ u(t) = g(u)(t),\qquad \qquad \quad t \in [-\tau, 0], \end{array} \right.$$ u ′ ( t ) ∈ A u ( t ) + f ( t , u t ) , t ∈ R + , u ( t ) = g ( u ) ( t ) , t ∈ [ - τ , 0 ] , where τ ≥ 0, X is a real Banach space, A is the infinitesimal generator of a nonlinear semigroup of contractions whose Lipschitz seminorm decays exponentially as ${t \mapsto {\rm{e}}^{-\omega t}}$ t ? e - ω t when ${t \to + \infty}$ t → + ∞ and ${f : {\mathbb{R}}_+ \times C([-\tau, 0]; \overline{D(A)}) \to X}$ f : R + × C ( [ - τ , 0 ] ; D ( A ) ¯ ) → X is jointly continuous. We prove that if f Lipschitz with respect to its second argument and its Lipschitz constant ? satisfies the condition ${\ell{\rm{e}}^{\omega\tau} < \omega, g : C_b([-\tau, +\infty); \overline{D(A)}) \to C([-\tau, 0]; \overline{D(A)})}$ ? e ω τ < ω , g : C b ( [ - τ , + ∞ ) ; D ( A ) ¯ ) → C ( [ - τ , 0 ] ; D ( A ) ¯ ) is nonexpansive and (IA)?1 is compact, then the unique C 0-solution of the problem above is almost periodic.  相似文献   

10.
In this paper, the authors establish the existence of at least three weak solutions for the Kirchhoff-type problem $$\left\{\begin{array}{ll}-K \left( \int_{\Omega}| \nabla u(x)|^{2}dx \right) \Delta u(x)= \lambda f(x,u)+\mu g(x,u),\quad {\rm in}\; \Omega,\\u=0, \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\quad {\rm on}\; \partial \Omega, \end{array} \right.$$ under appropriate hypotheses. The proofs are based on variational methods.  相似文献   

11.
ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0  相似文献   

12.
This paper studies the initial-boundary value problem of GBBM equations u_t - Δu_t = div f(u) \qquad\qquad\qquad(a) u(x, 0) = u_0(x)\qquad\qquad\qquad(b) u |∂Ω = 0 \qquad\qquad\qquad(c) in arbitrary dimensions, Ω ⊂ R^n. Suppose that. f(s) ∈ C¹ and |f'(s)| ≤ C (1+|s|^ϒ), 0 ≤ ϒ ≤ \frac{2}{n-2} if n ≥ 3, 0 ≤ ϒ < ∞ if n = 2, u_0 (x) ∈ W^{2⋅p}(Ω) ∩ W^{1⋅p}_0(Ω) (2 ≤ p < ∞), then ∀T > 0 there exists a unique global W^{2⋅p} solution u ∈ W^{1,∞}(0, T; W{2⋅p}(Ω)∩ W^{1⋅p}_0(Ω)), so the known results are generalized and improved essentially.  相似文献   

13.
In a bounded simple connected region G ? ?3 we consider the equation $$L\left[ u \right]: = k\left( z \right)\left( {u_{xx} + u_{yy} } \right) + u_{zz} + d\left( {x,y,z} \right)u = f\left( {x,y,z} \right)$$ where k(z)? 0 whenever z ? 0.G is surrounded forz≥0 by a smooth surface Γ0 with S:=Γ0 ? {(x,y,z)|=0} and forz<0 by the characteristic \(\Gamma _2 :---(x^2 + y^2 )^{{\textstyle{1 \over 2}}} + \int\limits_z^0 {(---k(t))^{{\textstyle{1 \over 2}}} dt = 0} \) and a smooth surface Γ1 which intersect the planez=0 inS and where the outer normal n=(nx, ny, nz) fulfills \(k(z)(n_x^2 + n_y^2 ) + n_z^2 |_{\Gamma _1 } > 0\) . Under conditions on Γ1 and the coefficientsk(z), d(x,y,z) we prove the existence of weak solutions for the boundary value problemL[u]=f inG with \(u|_{\Gamma _0 \cup \Gamma _1 } = 0\) . The uniqueness of the classical solution for this problem was proved in [1].  相似文献   

14.
In this paper, a viscoelastic equation with nonlinear boundary damping and source terms of the form $$\begin{array}{llll}u_{tt}(t)-\Delta u(t)+\displaystyle\int\limits_{0}^{t}g(t-s)\Delta u(s){\rm d}s=a\left\vert u\right\vert^{p-1}u,\quad{\rm in}\,\Omega\times(0,\infty), \\ \qquad\qquad\qquad\qquad\qquad u=0,\,{\rm on}\,\Gamma_{0} \times(0,\infty),\\ \dfrac{\partial u}{\partial\nu}-\displaystyle\int\limits_{0}^{t}g(t-s)\frac{\partial}{\partial\nu}u(s){\rm d}s+h(u_{t})=b\left\vert u\right\vert ^{k-1}u,\quad{\rm on} \ \Gamma_{1} \times(0,\infty) \\ \qquad\qquad\qquad\qquad u(0)=u^{0},u_{t}(0)=u^{1},\quad x\in\Omega, \end{array}$$ is considered in a bounded domain ??. Under appropriate assumptions imposed on the source and the damping, we establish both existence of solutions and uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function g, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function g. Moreover, for certain initial data in the unstable set, the finite time blow-up phenomenon is exhibited.  相似文献   

15.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

16.
The author demonstrate that the two-point boundary value problem {p′(s)=f′(s)-λp^β(s)for s∈(0,1);β∈(0,1),p(0)=p(1)=0,p(s)&gt;0 if s∈(0,1),has a solution(λ^-,p^-(s)),where |λ^-| is the smallest parameter,under the minimal stringent restrictions on f(s), by applying the shooting and regularization methods. In a classic paper, Kohmogorov et.al.studied in 1937 a problem which can be converted into a special case of the above problem. The author also use the solution(λ^-,p^-(s)) to construct a weak travelling wave front solution u(x,t)=y(ξ),ξ=x-Ct,C=λ^-N/(N+1),of the generalized diffusion equation with reaction δ/δx(k(u)|δu/δx|^n-1 δu/δx)-δu/δt=g(u),where N&gt;0,k(s)&gt;0 a.e.on(0,1),and f(a):=n+1/N∫0ag(t)k^1/N(t)dt is absolutely continuous ou[0,1],while y(ξ) is increasing and absolutely continuous on (-∞,+∞) and (k(y(ξ))|y′(ξ)|^N)′=g(y(ξ))-Cy′(ξ)a.e.on(-∞,+∞),y(-∞)=0,y(+∞)=1.  相似文献   

17.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

18.
In this paper, we study the general difference schemes with nonuniform meshes for the following problem: u_t = A(x,t,u,u_x)u_{xx}, + f(x,t,u,u_x), 0 < x < l, 0 < t ≤ T \qquad (1) u(0,t) = u(l ,t) = 0, 0 < t ≤ T \qquad\qquad (2) u(x,0) = φ(x), 0 ≤ x ≤ l \qquad\qquad (3) where u, φ, and f are m-dimensional vector valued functions, u_t = \frac{∂u}{∂t}, u_x = \frac{∂u}{∂x}, u_{xx} = \frac{∂²u}{∂_x²}. In the practical computation, we usually use the method of iteration to calculate the approximate solutions for the nonlinear difference schemes. Here the estimates of the iterative sequence constructed from the iterative difference schemes for the problem (1)-(3) is proved. Moreover, when the coefficient matrix A = A(x, t, u) is independent of u_x, t he convergence of the approximate difference solution for the iterative difference schemes to the unique solution of the problem (1)-(3) is proved without imposing the assumption of heuristic character concerning the existence of the unique smooth solution for the original problem (1)-(3).  相似文献   

19.
In this paper, we study the following Eigen-problem {-\frac{∂}{∂x_i}(a_{ij}(x, u)\frac{∂u}{∂x_j}) + \frac{1}{2}a_{iju}(x,u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u = μμ\frac{n+2}{n-2} \quad in Ω \qquad (0.1) u = 0 \quad on ∂Ω u > 0 \quad in Ω ⊂ R^n under some assumptions. First. we minimize I(u) = \frac{1}{2}∫_Ωa_{ij}(x, u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u² over E_α = {u ∈ H¹_0(Ω); ∫_Ωu^α = 1} ( 2 < α < N = \frac{2n}{n-2}) to give a H¹_0-solution U_α of the perturbation problems of (0.1). Since I is not differentiable in H¹_0(Ω), the key point is the estimate of U_α. Then, we derive local uniform bounds of (U_α) and give a 'bad' solution of (0.1). Last, we remove the singular points of the 'bad' solution to obtain a solution of (0.1), our result is a extension of that of Brezis & Nirenberg.  相似文献   

20.
We consider L^p-L^q estimates for the solution u(t,x) to tbe following perturbed Klein-Gordon equation ∂_{tt}u - Δu + u + V(x)u = 0 \qquad x∈ R^n, n ≥ 3 u(x,0) = 0, ∂_tu(x,0) = f(x) We assume that the potential V(x) and the initial data f(x) are compact, and V(x) is sufficiently small, then the solution u(t,x) of the above problem satisfies ||u(t)||_q ≤ Ct^{-a}||f||_p for t > 1 where a is the piecewise-linear function of 1/p and 1/q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号