首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of displacements of tensioned fibers on the impregnation of fibrous layers with a polymer melt and on the final composite structure is studied. Using computer simulation, it is shown that, during impregnation, the structure of tensioned fibrous layers changes considerably depending on the initial arrangement and tensioning of fibers. The consolidated regions formed under the melt front move inside the impregnated layer with the advancing melt front. Displacement of the tensioned fibers as well as the formation of “washouts” favors the impregnation of internal layers, but cause significant inhomogeneity of the polymer structure. The surface (on the side of the melt flow) regions are more saturated with the polymer than the internal ones. A difference in the melt percolation mechanisms at various impregnation regimes is revealed. The effective permeability coefficients of a tensioned fiber layer are not constant but depend on the conditions and regimes of impregnation. Submitted to the 11th Conference on the Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 259–270, March–April, 2000.  相似文献   

2.
A mathematical model for determining the effective elastic properties and describing the processes of inelastic deformation and damage accumulation of unidirectional fiber-reinforced composites with tetragonal and hexagonal structures is developed. A comparative analysis of the effective elastic moduli of glass, boron, organic, and carbon unidirectional plastics shows that, if the fiber volume fraction does not exceed 0.5, the effective elastic properties calculated by the models presented give closely related results. The calculation results for nonlinear fields of deformation and failure are presented and the limiting strength surfaces of fibrous glass plastics with hexagonal and tetragonal structures are obtained for different transverse loading paths. It is found that the structure of a composite affects significantly its strength properties.Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000).Perm' State Technical University, Perm', Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 455–464, July–August, 2000.  相似文献   

3.
Within the framework of a piecewise homogeneous body model, with the use of three-dimensional geometrically nonlinear exact equations of elasticity theory, a method for determining the stress—strain state in unidirectional fibrous composites with locally curved fibers is developed for the case where the interaction between the fibers is neglected. All the investigations are carried out for an infinite elastic body containing a single locally curved fiber. Numerical results illustrating the effect of geometrical nonlinearity on the distribution of the self-balanced normal and shear stresses acting on the interface and arising as a result of local curving of the fiber are presented.__________Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 4, pp. 433–448, July–August, 2005.  相似文献   

4.
A nonclassical model for the stress-strain state of a piecewise homogeneous composite bar is proposed. The model is based on an iterative process and takes into account the deplanation of cross sections of the bar caused by transverse shears. Based on the shear strains of some particular approximation, higher approximation models are constructed. The model accounts for both the normal and tangential loads.Presented at the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000).Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 487–500, July–August, 2000.  相似文献   

5.
The effect of curvature of the fibers on the modulus of elasticity of unidirectional glass-reinforced plastics (GRP) in tension has been investigated on the basis of the theory of layered reinforced media with random initial irregularities [1,2]. It is shown experimentally that relatively minor distortion of the fibers during manufacture may result in important changes in the modulus of elasticity. A model is proposed for determining the effect of fiber curvature on Young's modulus; experiments on specimens with a given regular fiber curvature indicate good agreement with the theory. The effect of prestressing the fibers on the modulus of elasticity has been studied using commercial AG-4S material and the optimum prestress has been established.Mekhanika Polimerov, Vol. 3, No. 2, pp. 243–249, 1967  相似文献   

6.
An experimental investigation of the effect of the rate of deformation on the strength and modulus of elasticity of vinyl plastic and glass-reinforced laminate is described. It is established that when the rate of relative tensile deformation of vinyl plastic at 25°C is reduced from 2000×10–6 sec–1 to 5×10–6 sec–1, and that for glass-reinforced laminate from 1000×10–6 sec–1 to 1.3×10–6 sec–1, the decrease in the modulus of elasticity is about 40% and the decrease in ultimate strength 30 and 48%, as the case may be.Mekhanika polimerov, Vol. 1, No. 1, pp. 76–81, 1965  相似文献   

7.
Results of investigation of deformation of elastomeric composite materials with a two-directional reinforcement scheme are presented. The study is performed on the basis of a structural macroscopic theory. The matrix of the composites analyzed is of a poorly compressible material. The fibers of both reinforcing systems are simulated as compressible bodies. Dependences of the parameters of tensile and shear strains on the strain values for different geometries of fiber arrangement are obtained.State Metallurgical Academy of Ukraine, Dnepropetrovsk, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 4, pp. 479–492, May–June, 1999.  相似文献   

8.
This article presents a mathematical model for predicting the transverse strength of unidirectional fiber composites subjected to combination transverse loading under different conditions. The behavior of the matrix is described by nonlinear physical equations consistent with the strain theory of plasticity for the active loading section. The fibers are assumed to be isotropic and elastic. The boundary-value problem of micromechanics that is formulated includes strength criteria for the matrix and fibers that mark the beginning of their possible failure. The modeling of the fracture process is taken farther through the use of a scheme that reduces the stiffness of the matrix and fibers in the failed regions in relation to the sign of the first invariant of the stress tensor. The method of local approximation is used together with the finite-element method to calculate the stress and strain fields in unidirectional composites with cylindrical fibers in a tetragonal layup. The model is used to study the behavior of an epoxy-based organic-fiber-reinforced plastic subjected to transverse loading in different simple paths — including simultaneous compressive and tensile loads, as well as transverse shear.Paper to be presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October 1995).Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 4, pp. 473–481, July–August, 1995.  相似文献   

9.
A simplified analysis of the dependence of the elastic properties and electrical conductivity of a carbon fiber on its orientation index is presented. The experimentally confirmed inverse correlation between the electrical resistivity and the speed of sound makes it possible to calculate the modulus of elasticity of carbon fibers from data on the bulk resistivity.Moscow Aviation Technological Institute. Translated from Mekhanika Polimerov, No. 5, pp. 846–850, September–October, 1971.  相似文献   

10.
Solutions of a rare-earth modifier (RES) and the epoxy chloropropane (ECP) grafting modification method are used for the surface treatment of F-12 aramid fibers. The effects of RES concentration on the interlaminar shear strength (ILSS) of F-12 aramid fiber/epoxy composites are investigated in detail, and the fracture surfaces of ILSS specimens are analyzed by SEM. It is shown that the RES surface treatment is superior to the ECP grafting treatment in promoting the interfacial adhesion between aramid fibers and the epoxy matrix. However, the tensile strength of single fibers is almost unaffected by the RES treatment. The optimum ILSS is obtained at a 0.5 wt.% content of rare-earth elements.__________Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 2, pp. 265–272, March–April, 2005.  相似文献   

11.
Discrete analogues of the boundary-value problems of a two-dimensional refined theory of anisotropic shells taking into account the transverse shear deformation are presented. The systems of resolving equations in the general form are obtained for arbitrary nonshallow shells of variable curvature whose coordinate lines of the reduction surface may not coincide with the lines of principal curvatures. The algebraic problems of determining the stress-strain state in shells made of composite materials with stress concentrators under various kinds of loads are obtained as particular cases of the schemes presented. The results of calculating the stress concentration near a nonsmall circular hole in a transversely isotropic nonshallow spherical shell under internal pressure are presented. The dependences of stress concentration factors on the hole dimension and on a change in the shear stiffness of the shells are studied. A comparison between the calculation results obtained within the framework of the theories of shallow and nonshallow shells is given.Presented at the 11th International Conference on the Mechanics of Composite Materials (Riga, June 11–15, 2000).Timoshenko Institute of Mechanics, Ukranian National Academy of Sciences, Kiev, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 465–472, July–August, 2000.  相似文献   

12.
The results of Kasparov, Connes, Higson, and Loring imply the coincidence of the functors [[qℂ ⊗ K, BK]] = [[C 0(ℝ2) ⊗ K, BK]] for any C*-algebra B; here[[A, B]] denotes the set of homotopy classes of asymptotic homomorphisms from A to B. Inthe paper, this assertion is strengthened; namely, it is shown that the algebras qℂ ⊗ K and C 0(ℝ2) ⊗ K are equivalent in the category whose objects are C*-algebras and morphisms are classes of homotopic asymptotic homomorphisms. Some geometric properties of the obtained equivalence are studied. Namely, the algebras qℂ ⊗ K and C 0(ℝ2) ⊗ K are represented as fields of C*-algebras; it is proved that the equivalence is not fiber-preserving, i.e., is does not take fibers to fibers. It is also proved that the algebras under consideration are not homotopy equivalent.__________Translated from Matematicheskie Zametki, vol. 77, no. 5, 2005, pp. 788–796.Original Russian Text Copyright ©2005 by T. V. Shul’man.  相似文献   

13.
A method of calculating the orientation index and modulus of elasticity of the elements of a two-phase fiber model is presented. The effect of orientational drawing on the variation of these characteristics has been investigated for nylon [capron] fibers.Mekhanika Polimerov, Vol. 3, No. 3, pp. 409–412, 1967  相似文献   

14.
Calculated and experimental relations between the modulus of elasticity and rigidity of unidirectional glass-reinforced plastics (GRP) and the capillarity coefficient of the hollow fiber reinforcement are presented. It is established that in calculating the flexural rigidity ratio of hollow- and solid-fiber GRP specimens of equal weight it is not permissible to neglect the mass and modulus of elasticity of the resin. The potentialities of hollow fibers as reinforcement for GRP shells subjected to external pressure are demonstrated.All-Union Scientific-Research Institute of Glass-Reinforced Plastics and Glass Fibers, Moscow Region. Translated from Mekhanika Polimerov, Vol. 4, No. 4, pp. 672–676, July–August, 1968.  相似文献   

15.
The author considers the results of calculations of the limiting values of the elastic properties (modulus of elasticity and load-extension diagram) of the main types of chemical fibers, using a model with "ideal orientation" of the molecules and the derived laws of deformation of polymer chains. A method is proposed for calculating the elastic properties of "ideally oriented" polymers from the velocity of propagation of an elastic deformation pulse and the effective density of the "skeletons" of the polymer chains. Values of the moduli of elasticity of the amorphous regions of the structure of oriented polymers are calculated. The calculated results are compared with experimental data on the elastic properties of fibers.Mekhanika Polimerov, Vol. 2, No. 1, pp. 34–42, 1966Paper read at the XIV All-Union Conference on High-Molecular Compounds, Oriented State.  相似文献   

16.
The article discusses the effect of the amount of binder present and the porosity of the glass reinforced plastic on the usable strength of the glass fibers, the tensile strength, and the elasticity module in stretching. It is shown that a relationship exists over the whole range tested between the volume ratio of the components (binder and glass fiber), certain strength characteristics, and porosity. A method is suggested for the comparison of glass-reinforced plastics according to their usable fiber strength which can be used for the selection of the best binder, the glass material, the glass composition, glass fibers, the lubricant, the technological scheme, etc.Moscow. Translated from Mekhanika Polimerov, No. 3, pp. 477–480, May–June, 1970.  相似文献   

17.
Conclusions The results of this study show that the ultimate stress increases with increasing deformation rate from 10–5 to 1 sec–1 but the initial elasticity modulus remains virtually constant. A characteristic feature of bone tissue is the significant increase or even maximum in specific deformation energy for destruction in the range of deformation rates corresponding to normal physiological conditions for bone function. The deformation diagrams of human bone tissue for the same values of moisture content and deformation rate in tensile testing do not differ from the analogous curves for the bone tissue of cattle. Quantitatively, the ultimate stress 11 and the initial elasticity modulus E1 are 5–10% and 15–25% greater, respectively, than for cattle bone tissue, while the ultimate deformation eu is virtually the same. An increase in the moisture content of bone tissue leads to a more pronounced dependence of the mechanical parameters on the deformation rate.Translated from Mekhanika Kompozitnykh Materialov, No. 3, pp. 512–517, May–June, 1982.  相似文献   

18.
Studies were made of the elastic characteristics (longitudinal elasticity modulus, elastic recovery) of Arimid PM fibers and of the longitudinal elasticity modulus of the crystal lattice of these samples. The elasticity modulus of the crystallites was determined by x-ray diffraction studies of loaded fibers. It is shown that the studied samples practically instanteneously recover their starting length after removing the load; the sample and its crystal lattice have comparatively low elasticity moduli with nearly identical values. Based on this data, reasons are discussed for the high elastic recovery of Arimid fibers and for the low elasticity modulus of its crystal lattice.Leningrad Branch, All-Union Scientific-Research Institute of Synthetic Fibers. Translated from Mekhanika Polimerov, No. 5, pp. 771–773, September–October, 1972.  相似文献   

19.
The production of unidirectionally fiber-reinforced composites (tapes) consisting of high-strength/high-modulus UHMWPE fibers and LDPE matrix is described. Two production techniques are applied: impregnation by aqueous powder dispersion and dry powder impregnation. The produced composites exhibit excellent mechanical properties. Depending on the fiber volume content which can be obtained: tensile strength (in fiber direction) 460–1100 MPa, elastic modulus 11–22 GPa, and elongation at break 4.9–8.3%.Presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995.Technical University of Berlin. Institute of Nonmetallic Materials. Polymer Physics Group.-Englishe Str. 20, D-10587 Berlin. Germany. Published in Mekhanik Kompozitnykh Materialov, Vol. 32, No. 6. pp. 719–728, November–December, 1996.  相似文献   

20.
The transverse compaction and consolidation of various aramid fibers used as a reinforcement of plastics are studied with the aim to assess the behavior of the fibers during their processing. The transverse deformation of fiber bundles is considered in the context of viscoplastic flow of the fiber-forming polymer squeezed out into the interfiber space upon the contact interaction of the fibers. This process is analyzed as a flow of a polymer melt having a certain viscosity. A gradual increase in the viscosity with development of transverse deformations is revealed, which corresponds to the morphology of fibers of the skin-core type. It is found that, under these conditions, the transverse deformation and sintering of Terlon fibers are insignificant compared with that of SVM fibers, therefore, they are preferably used for reinforcing heat-resistant thermoplastics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号