首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let w(x) = (1 - x)α (1 + x)β be a Jacobi weight on the interval [-1, 1] and 1 < p < ∞. If either α > ?1/2 or β > ?1/2 and p is an endpoint of the interval of mean convergence of the associated Fourier-Jacobi series, we show that the partial sum operators Sn are uniformly bounded from Lp,1 to Lp,∞, thus extending a previous result for the case that both α, β > ?1/2. For α, β > ?1/2, we study the weak and restricted weak (p, p)-type of the weighted operators f→uSn(u?1f), where u is also Jacobi weight.  相似文献   

2.
In [5], it is proved that a bounded linear operator u, from a Banach space Y into an Lp(S, ν) factors through Lp1 (S, ν) for some p1 > 1, if Y* is of finite cotype; (S, ν) is a probability space for p = 0, and any measure space for 0 < p < 1. In this paper, we generalize this result to uv, where u : YLp(S, ν) and v : XY are linear operators such that v* is of finite Ka?in cotype. This result gives also a new proof of Grothendieck's theorem. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
A priori bounds for positive, very weak solutions of semilinear elliptic boundary value problems −Δu=f(x,u) on a bounded domain ΩRn with u=0 on ∂Ω are studied, where the nonlinearity 0?f(x,s) grows at most like sp. If Ω is a Lipschitz domain we exhibit two exponents p* and p*, which depend on the boundary behavior of the Green function and on the smallest interior opening angle of ∂Ω. We prove that for 1<p<p* all positive very weak solutions are a priori bounded in L. For p>p* we construct a nonlinearity f(x,s)=a(x)sp together with a positive very weak solution which does not belong to L. Finally we exhibit a class of domains for which p*=p*. For such domains we have found a true critical exponent for very weak solutions. In the case of smooth domains is an exponent which is well known from classical work of Brezis, Turner [H. Brezis, R.E.L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977) 601-614] and from recent work of Quittner, Souplet [P. Quittner, Ph. Souplet, A priori estimates and existence for elliptic systems via bootstrap in weighted Lebesgue spaces, Arch. Ration. Mech. Anal. 174 (2004) 49-81].  相似文献   

4.
In this paper, the boundedness of all solutions of the nonlinear differential equation (φp(x′))′ + αφp(x+) – βφp(x) + f(x) = e(t) is studied, where φp(u) = |u|p–2 u, p ≥ 2, α, β are positive constants such that = 2w–1 with w ∈ ?+\?, f is a bounded C5 function, e(t) ∈ C6 is 2πp‐periodic, x+ = max{x, 0}, x = max{–x, 0}. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We obtain the LpLq maximal regularity of the Stokes equations with Robin boundary condition in a bounded domain in ?n (n?2). The Robin condition consists of two conditions: v ? u=0 and αu+β(T(u, p)v – 〈T(u, p)v, vv)=h on the boundary of the domain with α, β?0 and α+β=1, where u and p denote a velocity vector and a pressure, T(u, p) the stress tensor for the Stokes flow and v the unit outer normal to the boundary of the domain. It presents the slip condition when β=1 and non‐slip one when α=1, respectively. The slip condition is appropriate for problems that involve free boundaries. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we study the existence of periodic solutions of the fourth-order equations uivpu″ − a(x)u + b(x)u3 = 0 and uivpu″ + a(x)ub(x)u3 = 0, where p is a positive constant, and a(x) and b(x) are continuous positive 2L-periodic functions. The boundary value problems (P1) and (P2) for these equations are considered respectively with the boundary conditions u(0) = u(L) = u″(0) = u″(L) = 0. Existence of nontrivial solutions for (P1) is proved using a minimization theorem and a multiplicity result using Clark's theorem. Existence of nontrivial solutions for (P2) is proved using the symmetric mountain-pass theorem. We study also the homoclinic solutions for the fourth-order equation uiv + pu″ + a(x)ub(x)u2c(x)u3 = 0, where p is a constant, and a(x), b(x), and c(x) are periodic functions. The mountain-pass theorem of Brezis and Nirenberg and concentration-compactness arguments are used.  相似文献   

7.
In this paper, we study the L p (2 ⩽ p ⩽ +∞) convergence rates of the solutions to the Cauchy problem of the so-called p-system with nonlinear damping. Precisely, we show that the corresponding Cauchy problem admits a unique global solution (v(x,t), u(x,t)) and such a solution tends time-asymptotically to the corresponding nonlinear diffusion wave ((x,t), ū(x,t)) governed by the classical Darcys’s law provided that the corresponding prescribed initial error function (w 0(x), z 0(x)) lies in (H 3 × H 2) (ℝ) and |v +v | + ∥w 03 + ∥z 02 is sufficiently small. Furthermore, the L p (2 ⩽ p ⩽ +∞) convergence rates of the solutions are also obtained.  相似文献   

8.
For a bounded linear injectionCon a Banach spaceXand a closed linear operatorA : D(A) XXwhich commutes withCwe prove that (1) the abstract Cauchy problem,u″(t) = Au(t),t R,u(0) = Cx,u′(0) = Cy, has a unique strong solution for everyx,y D(A) if and only if (2)A1 = AD(A2) generates aC1-cosine function onX1(D(A) with the graph norm), if (and only if, in caseAhas nonempty resolvent set) (3)Agenerates aC-cosine function onX. HereC1 = CX1. Under the assumption thatAis densely defined andC−1AC = A, statement (3) is also equivalent to each of the following statements: (4) the problemv″(t) = Av(t) + C(x + ty) + ∫t0 Cg(r) dr,t R,v(0) = v′(0) = 0, has a unique strong solution for everyg L1locandx, y X; (5) the problemw″(t) = Aw(t) + Cg(t),t R,w(0) = Cx,w′(0) = Cy, has a unique weak solution for everyg L1locandx, y X. Finally, as an application, it is shown that for any bounded operatorBwhich commutes withCand has range contained in the range ofC,A + Bis also a generator.  相似文献   

9.
We prove two-weight, weak type norm inequalities for potential operators and fractional integrals defined on spaces of homogeneous type. We show that the operators in question are bounded from Lp(v) to Lq,∞(u), 1<p?q<∞, provided the pair of weights (u,v) verifies a Muckenhoupt condition with a “power-bump” on the weight u.  相似文献   

10.
11.
In earlier work we introduced and studied two commuting generalized Lamé operators, obtaining in particular joint eigenfunctions for a dense set in the natural parameter space. Here we consider these difference operators and their eigenfunctions in relation to the Hilbert space L2((0, π/r), w(x)dx), with r > 0 and the weight function w(x) a ratio of elliptic gamma functions. In particular, we show that the previously known pairwise orthogonal joint eigenfunctions need only be supplemented by finitely many new ones to obtain an orthogonal base. This completeness property is derived by exploiting recent results on the large-degree Hilbert space asymptotics of a class of orthonormal polynomials. The polynomials pn(cos(rx)), n ε , that are relevant in the Lamé setting are orthonormal in L2((0, π/r), wP(x)dx), with wp(x) closely related to w(x).  相似文献   

12.
In this paper we prove the behaviour in weighted Lp spaces of the oscillation and variation of the Hilbert transform and the Riesz transform associated with the Hermite operator of dimension 1. We prove that this operator maps LP(R, w(x)dx) into itself when w is a weight in the Ap class for 1 〈 p 〈 ∞. For p = 1 we get weak type for the A1 class. Weighted estimated are also obtained in the extreme case p = ∞.  相似文献   

13.
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

14.
The system of equations (f (u))t − (a(u)v + b(u))x = 0 and ut − (c(u)v + d(u))x = 0, where the unknowns u and v are functions depending on , arises within the study of some physical model of the flow of miscible fluids in a porous medium. We give a definition for a weak entropy solution (u, v), inspired by the Liu condition for admissible shocks and by Krushkov entropy pairs. We then prove, in the case of a natural generalization of the Riemann problem, the existence of a weak entropy solution only depending on x/t. This property results from the proof of the existence, by passing to the limit on some approximations, of a function g such that u is the classical entropy solution of ut − ((cg + d)(u))x = 0 and simultaneously w = f (u) is the entropy solution of wt − ((ag + b)(f(−1)(w)))x = 0. We then take v = g(u), and the proof that (u, v) is a weak entropy solution of the coupled problem follows from a linear combination of the weak entropy inequalities satisfied by u and f (u). We then show the existence of an entropy weak solution for a general class of data, thanks to the convergence proof of a coupled finite volume scheme. The principle of this scheme is to compute the Godunov numerical flux with some interface functions ensuring the symmetry of the finite volume scheme with respect to both conservation equations.  相似文献   

15.
Consider the Cauchy problem ∂u(x, t)/∂t = ℋu(x, t) (x∈ℤd, t≥ 0) with initial condition u(x, 0) ≡ 1 and with ℋ the Anderson Hamiltonian ℋ = κΔ + ξ. Here Δ is the discrete Laplacian, κ∈ (0, ∞) is a diffusion constant, and ξ = {ξ(x): x∈ℤ d } is an i.i.d.random field taking values in ℝ. G?rtner and Molchanov (1990) have shown that if the law of ξ(0) is nondegenerate, then the solution u is asymptotically intermittent. In the present paper we study the structure of the intermittent peaks for the special case where the law of ξ(0) is (in the vicinity of) the double exponential Prob(ξ(0) > s) = exp[−e s ] (s∈ℝ). Here θ∈ (0, ∞) is a parameter that can be thought of as measuring the degree of disorder in the ξ-field. Our main result is that, for fixed x, y∈ℤ d and t→∈, the correlation coefficient of u(x, t) and u(y, t) converges to ∥w ρ−2 ℓ2Σz ∈ℤd w ρ(x+z)w ρ(y+z). In this expression, ρ = θ/κ while w ρ:ℤd→ℝ+ is given by w ρ = (v ρ) d with v ρ: ℤ→ℝ+ the unique centered ground state (i.e., the solution in ℓ2(ℤ) with minimal l 2-norm) of the 1-dimensional nonlinear equation Δv + 2ρv log v = 0. The uniqueness of the ground state is actually proved only for large ρ, but is conjectured to hold for any ρ∈ (0, ∞). empty It turns out that if the right tail of the law of ξ(0) is thicker (or thinner) than the double exponential, then the correlation coefficient of u(x, t) and u(y, t) converges to δ x, y (resp.the constant function 1). Thus, the double exponential family is the critical class exhibiting a nondegenerate correlation structure. Received: 5 March 1997 / Revised version: 21 September 1998  相似文献   

16.
If the longitudinal line method is applied to the Cauchy problem ut = uxx, u(0, x) = u0(x) with a bounded function u0, one is led to a linear initial value problem v¢(t)=A v(t), v(0)=wv'(t)=A v(t),\, v(0)=w in l (\Bbb Z)l^\infty (\Bbb Z). Using Banach limit techniques we study the asymptotic behaviour of the solutions of these problems as t tends to infinity.  相似文献   

17.
Hamiltonism and Partially Square Graphs   总被引:10,自引:0,他引:10  
 Given a graph G, we define its partially square graph G * as the graph obtained by adding edges uv whenever the vertices u and v have a common neighbor x satisfying the condition N G[x]⊆N G[u]∪N G [v], where N G[x]=N G(x)∪{x}. In particular, this condition is satisfied if x does not center a claw (an induced K 1,3). Obviously GG *G 2, where G 2 is the square of G. We prove that a k-connected graph (k≥2) G is hamiltonian if the independence number α(G *) of G * does not exceed k. If we replace G * by G we get a well known result of Chvátal and Erdo?s. If G is claw-free and G * is replaced by G 2 then we obtain a result of Ainouche, Broersma and Veldman. Relationships between connectivity of G and independence number of G * for other hamiltonian properties are also given in this paper. Received: June 17, 1996 Revised: October 30, 1998  相似文献   

18.
A k-containerC(u,v) of G between u and v is a set of k internally disjoint paths between u and v. A k-container C(u,v) of G is a k*-container if it contains all vertices of G. A graph G is k*-connected if there exists a k*-container between any two distinct vertices. The spanning connectivity of G, κ*(G), is defined to be the largest integer k such that G is w*-connected for all 1?w?k if G is a 1*-connected graph. In this paper, we prove that κ*(G)?2δ(G)-n(G)+2 if (n(G)/2)+1?δ(G)?n(G)-2. Furthermore, we prove that κ*(G-T)?2δ(G)-n(G)+2-|T| if T is a vertex subset with |T|?2δ(G)-n(G)-1.  相似文献   

19.
We show that large positive solutions exist for the semilinear elliptic equation Δu = p(x)u α + q(x)v β on bounded domains in R n , n ≥ 3, for the superlinear case 0 < α ≤ β, β > 1, but not the sublinear case 0 < α ≤ β ≤ 1. We also show that entire large positive solutions exist for both the superlinear and sublinear cases provided the nonnegative continuous functions p and q satisfy certain decay conditions at infinity. Existence and nonexistence of entire bounded solutions are established as well.  相似文献   

20.
The linear equation Δ2u = 1 for the infinitesimal buckling under uniform unit load of a thin elastic plate over ?2 has the particularly interesting nonlinear generalization Δg2u = 1, where Δg = e?2u Δ is the Laplace‐Beltrami operator for the metric g = e2ug0, with g0 the standard Euclidean metric on ?2. This conformal elliptic PDE of fourth order is equivalent to the nonlinear system of elliptic PDEs of second order Δu(x)+Kg(x) exp(2u(x)) = 0 and Δ Kg(x) + exp(2u(x)) = 0, with x ∈ ?2, describing a conformally flat surface with a Gauss curvature function Kg that is generated self‐consistently through the metric's conformal factor. We study this conformal plate buckling equation under the hypotheses of finite integral curvature ∫ Kg exp(2u)dx = κ, finite area ∫ exp(2u)dx = α, and the mild compactness condition K+L1(B1(y)), uniformly w.r.t. y ∈ ?2. We show that asymptotically for |x|→∞ all solutions behave like u(x) = ?(κ/2π)ln |x| + C + o(1) and K(x) = ?(α/2π) ln|x| + C + o(1), with κ ∈ (2π, 4π) and . We also show that for each κ ∈ (2π, 4π) there exists a K* and a radially symmetric solution pair u, K, satisfying K(u) = κ and maxK = K*, which is unique modulo translation of the origin, and scaling of x coupled with a translation of u. © 2001 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号