首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
We study the large time behavior of solutions of a one-dimensional hyperbolic relaxation system that may be written as a nonlinear damped wave equation. First, we prove the global existence of a unique solution and their decay properties for sufficiently small initial data. We also show that for some large initial data, solutions blow-up in finite time. For quadratic nonlinearities, we prove that the large time behavior of solutions is given by the fundamental solution of the viscous Burgers equation. In some other cases, the convection term is too weak and the large time behavior is given by the linear heat kernel.  相似文献   

2.
We consider the Cauchy problem for one-dimensional(1D) barotropic compressible Navier-Stokes equations with density-depending viscosity and large external forces. Under a general assumption on the densitydepending viscosity, we prove that the Cauchy problem admits a unique global strong(classical) solution for the large initial data with vacuum. Moreover, the density is proved to be bounded from above time-independently.As a consequence, we obtain the large time behavior of the solution without external forces.  相似文献   

3.
In this paper,we consider a localized problem with free boundary for the heat equation in higher space dimensions and heterogeneous environment.For simplicity,we assume that the environment and solution are radially symmetric.First,by using the contraction mapping theorem,we prove that the local solution exists and is unique.Then,some sufficient conditions are given under which the solution will blow up in finite time.Our results indicate that the blowup occurs if the initial data are sufficiently large.Finally,the long time behavior of the global solution is discussed.It is shown that the global fast solution does exist if the initial data are sufficiently small,while the global slow solution is possible if the initial data are suitably large.  相似文献   

4.
In this paper, we consider the three dimensional Cauchy problem of the compressible micropolar viscous flows. We prove the existence of unique global classical solution for smooth initial data with small initial energy but possibly large oscillations and the initial density may allowed to contain the interior and far field vacuum states. Furthermore, the large time behavior of the solution is obtained as well.  相似文献   

5.
This paper concerns the global existence and the large time behavior of strong and classical solutions to the two-dimensional (2D) Stokes approximation equations for the compressible flows. We consider the unique global strong solution or classical solution to the 2D Stokes approximation equations for the compressible flows together with the space-periodicity boundary condition or the no-stick boundary condition or Cauchy problem for arbitrarily large initial data. First, we prove that the density is bounded from above independent of time in all these cases. Secondly, we show that for the space-periodicity boundary condition or the no-stick boundary condition, if the initial density contains vacuum at least at one point, then the global strong (or classical) solution must blow up as time goes to infinity.  相似文献   

6.
In this article we study Burgers equation and vector Burgers equation with initial and boundary conditions. First we consider the Burgers equation in the quarter plane x >0, t >0 with Riemann type of initial and boundary conditions and use the Hopf–Cole transformation to linearize the problems and explicitly solve them. We study two limits, the small viscosity limit and the large time behavior of solutions. Next, we study the vector Burgers equation and solve the initial value problem for it when the initial data are gradient of a scalar function. We investigate the asymptotic behavior of this solution as time tends to infinity and generalize a result of Hopf to the vector case. Then we construct the exact N-wave solution as an asymptote of solution of an initial value problem extending the previous work of Sachdev et al. (1994). We also study the limit as viscosity parameter goes to 0.Finally, we get an explicit solution for a boundary value problem in a cylinder.  相似文献   

7.
An SIS epidemic model of a vertically as well as horizontally transmitted disease is investigated when the fertility, mortality, and recovery rates depend on age and the force of infection is of proportionate mixing assumption type. We determine the steady states and obtain an explicitly computable threshold condition, and then we perform stability analysis. We also study the time dependent solution of the model and determine the large time behavior of the solution.  相似文献   

8.
In [7] we show the global existence and uniqueness of a solution of carbon dioxide transport model in concrete carbonation process. This model is governed by a parabolic-type equation which has a non-local term depending on the unknown function itself. In this paper, we show the large time behavior of that solution.  相似文献   

9.
The present paper concerns with the global structure and asymptotic behavior of the discontinuous solutions to flood wave equations. By solving a free boundary problem, we first obtain the global structure and large time behavior of the weak solutions containing two shock waves. For the Cauchy problem with a class of initial data, we use Glimm scheme to obtain a uniform BV estimate both with respect to time and the relaxation parameter. This yields the global existence of BV solution and convergence to the equilibrium equation as the relaxation parameter tends to 0.  相似文献   

10.
In this article, we construct solutions of a nonhomogeneous Burgers equation subject to certain unbounded initial profiles. In an interesting study, Kloosterziel [ 1 ] represented the solution of an initial value problem (IVP) for the heat equation, with initial data in , as a series of the self‐similar solutions of the heat equation. This approach quickly revealed the large time behavior for the solution of the IVP. Inspired by Kloosterziel [ 1 ]'s approach, we express the solution of the nonhomogeneous Burgers equation in terms of the self‐similar solutions of a linear partial differential equation with variable coefficients. Finally, we also obtain the large time behavior of the solution of the nonhomogeneous Burgers equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号