首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Search-based advertising has become very popular since it provides advertisers the ability to attract potential customers with measurable returns. In this type of advertising, advertisers bid on keywords to have an impact on their ad’s placement, which in turn affects the response from potential customers. An advertiser must choose the right keywords and then bid correctly for each keyword in order to maximize the expected revenue or attain a certain level of exposure while keeping the daily costs in mind. In response to increasing need for analytical models that provide a guidance to advertisers, we construct and examine deterministic optimization models that minimize total expected advertising costs while satisfying a desired level of exposure. We investigate the relationship between our problem and the well-known continuous non-linear knapsack problem, and then solve the problem optimally by utilizing Karush–Kuhn–Tucker conditions. We present practical managerial insights based on the analysis of both a real-life data from a retailer and a hypothetical data.  相似文献   

2.
Search-based advertising allows the advertisers to run special campaigns targeted to different groups of potential consumers at low costs. Google, Yahoo and Microsoft advertising programs allow the advertisers to bid for an ad position on the result page of a user’s query when the user searches for a keyword that the advertiser relates to its products or services. The expected revenue generated by the ad depends on the ad position, and the ad positions of the advertisers are concurrently determined after an instantaneous auction based on the bids of the advertisers. The advertisers are charged only when their ads are clicked by the users. To avoid excessive ad expenditures due to sudden surges in the keyword-search activities, each advertiser reserves a fixed finite daily budget, and the ads are not shown in the remainder of the day when the budget is depleted. Arrival times of keyword-search instances, ad positions, ad selections, and sales generated by the ads are random. Therefore, an advertiser faces a dynamic stochastic total net revenue optimization problem subject to a strict budget constraint. Here we formulate and solve this problem using dynamic programming. We show that there is always an optimal dynamic bidding policy. We describe an iterative numerical approximation algorithm that uniformly converges to the optimal solution at an exponential rate of the number of iterations. We illustrate the algorithm on numerical examples. Because dynamic programing calculations of the optimal bidding policies are computationally demanding, we also propose both static and dynamic alternative bidding policies. We numerically compare the performances of optimal and alternative bidding policies by systematically changing each input parameter. The relative percentage total net revenue losses of the alternative bidding policies increases with the budget loading, but were never more than 3.5 % of maximum expected total net revenue. The best alternative to the optimal bidding policy turned out to be a static greedy bidding policy. Finally, statistical estimation of the model parameters is visited.  相似文献   

3.
One of the key challenges of current day electronic procurement systems is to enable procurement decisions transcend beyond a single attribute such as cost. Consequently, multiattribute procurement have emerged as an important research direction. In this paper, we develop a multiattribute e-procurement system for procuring large volume of a single item. Our system is motivated by an industrial procurement scenario for procuring raw material. The procurement scenario demands multiattribute bids, volume discount cost functions, inclusion of business constraints, and consideration of multiple criteria in bid evaluation. We develop a generic framework for an e-procurement system that meets the above requirements. The bid evaluation problem is formulated as a mixed linear integer multiple criteria optimization problem and goal programming is used as the solution technique. We present a case study for which we illustrate the proposed approach and a heuristic is proposed to handle the computational complexity arising out of the cost functions used in the bids.  相似文献   

4.
We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates better Value-at-Risk objective functions, especially for vectors with few non-zero components. An example of budget function is constructed from the probabilistic bounds computed by Bertsimas and Sim. We provide an asymptotically tight bound for the cost reduction obtained with the new model. We turn then to the tractability of the resulting optimization problems. We show that when the budget function is affine, the resulting optimization problems can be solved by solving n+1n+1 deterministic problems. We propose combinatorial algorithms to handle problems with more general budget functions. We also adapt existing dynamic programming algorithms to solve faster the robust counterparts of optimization problems, which can be applied both to the traditional budgeted uncertainty model and to our new model. We evaluate numerically the reduction in the price of robustness obtained with the new model on the shortest path problem and on a survivable network design problem.  相似文献   

5.
This paper looks at a Multi-Period Renewal equipment problem (MPR). It is inspired by a specific real-life situation where a set of hardware items is to be managed and their replacement dates determined, given a budget over a time horizon comprising a set of periods. The particular characteristic of this problem is the possibility of carrying forward any unused budget from one period to the next, which corresponds to the multi-periodicity aspect in the model. We begin with the industrial context and deduce the corresponding knapsack model that is the subject of this paper. Links to certain variants of the knapsack problem are next examined. We provide a study of complexity of the problem, for some of its special cases, and for its continuous relaxation. In particular, it is established that its continuous relaxation and a special case can be solved in (strongly) polynomial time, that three other special cases can be solved in pseudo-polynomial time, while the problem itself is strongly NP-hard when the number of periods is unbounded. Next, two heuristics are proposed for solving the MPR problem. Experimental results and comparisons with the Martello&Toth and Dantzig heuristics, adapted to our problem, are provided.  相似文献   

6.
ABSTRACT

In corporate bond markets, which are mainly OTC markets, market makers play a central role by providing bid and ask prices for bonds to asset managers. Determining the optimal bid and ask quotes that a market maker should set for a given universe of bonds is a complex task. The existing models, mostly inspired by the Avellaneda-Stoikov model, describe the complex optimization problem faced by market makers: proposing bid and ask prices for making money out of the difference between them while mitigating the market risk associated with holding inventory. While most of the models only tackle one-asset market making, they can often be generalized to a multi-asset framework. However, the problem of solving the equations characterizing the optimal bid and ask quotes numerically is seldom tackled in the literature, especially in high dimension. In this paper, we propose a numerical method for approximating the optimal bid and ask quotes over a large universe of bonds in a model à la Avellaneda–Stoikov. As classical finite difference methods cannot be used in high dimension, we present a discrete-time method inspired by reinforcement learning techniques, namely, a model-based deep actor-critic algorithm.  相似文献   

7.
The binary knapsack problem is a combinatorial optimization problem in which a subset of a given set of elements needs to be chosen in order to maximize profit, given a budget constraint. In this paper, we study a stochastic version of the problem in which the budget is random. We propose two different formulations of this problem, based on different ways of handling infeasibility, and propose an exact algorithm and a local search-based heuristic to solve the problems represented by these formulations. We also present the results from some computational experiments.  相似文献   

8.
This paper is concerned with setting a predetermined number of bid levels in a Dutch auction to maximize the auctioneer’s expected revenue. As a departure from the traditional methods used by applied economists and game-theorists, a novel approach is taken in this study to tackle the problem by formulating the auctioning process as a constrained nonlinear program and applying standard optimization techniques to solve it. Aside from proposing respective closed-form formulae for computing the optimal bid levels and the auctioneer’s maximum expected revenue, we also show that the bid decrements should be increasing if there are two or more bidders in the Dutch auction. Additionally, the auctioneer’s maximum expected revenue increases with the number of bidders as well as the number of bid levels. Finally, managerial implications of the key findings as well as limitations of this research work are discussed.  相似文献   

9.
The winner determination problem (WDP) in combinatorial auctions is the problem of, given a finite set of combinatorial bids B, finding a feasible subset B of B with a maximum revenue. WDP is known to be equivalent to the maximum weight set packing problem, and hard to approximate by polynomial time algorithms. This paper proposes three heuristic bid ordering schemes for solving WDP; the first two schemes take into account the number of goods shared by conflicting bids, and the third one is based on a recursive application of such local heuristic functions. We conducted several experiments to evaluate the goodness of the proposed schemes. The result of experiments implies that the first two schemes are particularly effective to improve the performance of the resulting heuristic search procedures. More concretely, they are scalable compared with the conventional linear programming (LP) relaxation based schemes, and could quickly provide an optimum solution under optimization schemes such as the branch-and-bound method. In addition, they exhibit a good anytime performance competitive to the LP-based schemes, although it is sensitive to configurable parameters controlling the strength of contributions of bid conflicts to the resultant bid ordering schemes.  相似文献   

10.
Abstract

This paper is devoted to the problem of hedging contingent claims in the framework of a two factors jump-diffusion model under initial budget constraint. We give explicit formulas for the so called efficient hedging. These results are applied for the pricing of equity linked-life insurance contracts.  相似文献   

11.
One of the latest developments in network revenue management (RM) is the incorporation of customer purchase behavior via discrete choice models. Many authors presented control policies for the booking process that are expressed in terms of which combination of products to offer at a given point in time and given resource inventories. However, in many implemented RM systems—most notably in the hotel industry—bid price control is being used, and this entails the problem that the recommended combination of products as identified by these policies might not be representable through bid price control. If demand were independent from available product alternatives, an optimal choice of bid prices is to use the marginal value of capacity for each resource in the network. But under dependent demand, this is not necessarily the case. In fact, it seems that these bid prices are typically not restrictive enough and result in buy-down effects.We propose (1) a simple and fast heuristic that iteratively improves on an initial guess for the bid price vector; this first guess could be, for example, dynamic estimates of the marginal value of capacity. Moreover, (2) we demonstrate that using these dynamic marginal capacity values directly as bid prices can lead to significant revenue loss as compared to using our heuristic to improve them. Finally, (3) we investigate numerically how much revenue performance is lost due to the confinement to product combinations that can be represented by a bid price.The heuristic is not restricted to a particular choice model and can be combined with any method that provides us with estimates of the marginal values of capacity. In our numerical experiments, we test the heuristic on some popular networks examples taken from peer literature. We use a multinomial logit choice model which allows customers from different segments to have products in common that they consider to purchase. In most problem instances, our heuristic policy results in significant revenue gains over some currently available alternatives at low computational cost.  相似文献   

12.
This paper proposes and studies an optimal placement problem in a limit order book. Under a correlated random walk model with mean-reversion for the best ask/bid price, optimal placement strategies for both static and dynamic cases are derived. In the static case, the optimal strategy involves only the market order, the best bid, and the second best bid; the optimal strategy for the dynamic case is shown to be of a threshold type depending on the remaining trading time, the market momentum, and the price mean-reversion factor. Critical to the analysis is a generalized reflection principle for correlated random walks, which enables a significant dimension reduction.  相似文献   

13.
The time/cost trade-off models in project management aim to reduce the project completion time by putting extra resources on activity durations. The budget problem in discrete time/cost trade-off scheduling selects a time/cost mode for each activity so as to minimize the project completion time without exceeding the available budget. There may be alternative modes that solve the budget problem optimally and each solution may have a different total cost value. In this study we consider the budget problem and aim to find the minimum cost solution among the minimum project completion time solutions. We analyse the structure of the problem together with its linear programming relaxation and derive some mechanisms for reducing the problem size. We solve the reduced problem by branch and bound based optimization and heuristic algorithms. We find that our branch and bound algorithm finds optimal solutions for medium-sized problem instances in reasonable times and the heuristic algorithms produce high quality solutions very quickly.  相似文献   

14.
本文讨论了约束乘积最大问题最优解的结构特征,在此基础上给出了一个计算时间为O(n2)的强多项式时间算法,并且对于单边约束的情形给出了复杂度更低(O(nlnn))的强多项式时间算法.  相似文献   

15.
In this paper, we discuss two challenges of long term facility location problem that occur simultaneously; future demand change and uncertain number of future facilities. We introduce a mathematical model that minimizes the initial and expected future weighted travel distance of customers. Our model allows relocation for the future instances by closing some of the facilities that were located initially and opening new ones, without exceeding a given budget. We present an integer programming formulation of the problem and develop a decomposition algorithm that can produce near optimal solutions in a fast manner. We compare the performance of our mathematical model against another method adapted from the literature and perform sensitivity analysis. We present numerical results that compare the performance of the proposed decomposition algorithm against the exact algorithm for the problem.  相似文献   

16.
For network revenue management problems, it is known that the bid prices computed through the so-called deterministic linear program are asymptotically optimal as the capacities on the flight legs and the expected numbers of product requests increase linearly with the same rate. In this paper, we show that the same asymptotic optimality result holds for the bid prices computed through the so-called randomized linear program. We computationally investigate how the performance of the randomized linear program changes with different problem parameters and with the number of samples. The hope is that our asymptotic optimality result and computational experiments will raise awareness for the randomized linear program, which has yet not been popular in the research community or industry.  相似文献   

17.
In this paper, we study the fuzzification of Weingartner’s pure capital rationing model and its analysis. We develop a primal–dual pair based on t-norm/t-conorm relation for the constraints and objective function for a fully fuzzified pure capital rationing problem except project selection variables. We define the αα-interval under which the weak duality is proved. We perform sensitivity analysis for a change in a budget level or in a cash flow level of a non-basic as well as a basic variable. We analyze the problem based on duality and complementary slackness results. We illustrate the proposed model by computational analysis, and interpret the results.  相似文献   

18.
We consider the deadline problem and budget problem of the nonlinear time–cost tradeoff project scheduling model in a series–parallel activity network. We develop fully polynomial-time approximation schemes for both problems using K-approximation sets and functions, together with series and parallel reductions.  相似文献   

19.
Consider a marketplace operated by a buyer who wishes to procure large quantities of several heterogeneous products. Suppliers submit price curves for each of the commodities indicating the price charged as a function of the supplied quantity. The total amount paid to a supplier is the sum of the prices charged for the individual commodities. It is assumed that the submitted supply curves are piecewise linear as they often are in practice. The bid evaluation problem faced by the procurer is to determine how much of each commodity to buy from each of the suppliers so as to minimize the total purchase price. In addition to meeting the demand, the buyer may impose additional business requirements that restrict which contracts suppliers may be awarded. These requirements may result in interdependencies between the commodities which lead to suboptimal results if the commodities are traded in independent auctions rather than simultaneously. Even without the additional business constraints the bid evaluation problem is NP-hard. The main contribution of our study is a flexible column generation based heuristics that provides near-optimal solutions to the procurer’s bid evaluation problem. Our method scales very well due to the Branch-and-Price technology it is built on. We employ sophisticated rounding and local improvement heuristics to obtain quality solutions. We also developed a test data generator that produces realistic problems and allows control over the difficulty level of the problems using parameters.  相似文献   

20.
In this paper we will examine the effects of uncertainty of investment costs on the expected gain and budget allocation of a decision-maker. These effects are studied using the relationship between riskiness and stochastic dominance. Results and examples are provided for the case of budgeting one project. Furthermore, the problem of centralized vs. non-centralized budget allocation forn identically independent distributed projects is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号