首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
This paper studies synchronization behavior of coupled time-delay chaotic systems for the case that parameter mismatch and stochastic perturbation occur in the response system. We establish quasi-synchronization criterion by analyzing stochastic stability of synchronization error system. A numerical example is also presented to show the effectiveness of theoretical results.  相似文献   

2.
This paper is concerned with the adaptive synchronization problem for a class of stochastic delayed neural networks. Based on the LaSalle invariant principle of stochastic differential delay equations and the stochastic analysis theory as well as the adaptive feedback control technique, a linear matrix inequality approach is developed to derive some novel sufficient conditions achieving complete synchronization of unidirectionally coupled stochastic delayed neural networks. In particular, the synchronization criterion considered in this paper is the globally almost surely asymptotic stability of the error dynamical system, which has seldom been applied to investigate the synchronization problem. Moreover, the delays proposed in this paper are time-varying delays and distributed delays, which have rarely been used to study the synchronization problem for coupled stochastic delayed neural networks. Therefore, the results obtained in this paper are more general and useful than those given in the previous literature. Finally, two numerical examples and their simulations are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

3.
In this paper, the finite-time synchronization and identification for the uncertain system parameters and topological structure of complex delayed networks with Markovian jumping parameters and stochastic perturbations is studied. On the strength of finite time stability theorem and appropriate stochastic Lyapunov–Krasovskii functional under the Itô’s formula, some sufficient conditions are obtained to assurance that the complex delayed networks with Markovian switching dynamic behavior can be identified the uncertain parameters and topological structure matrix in finite time under stochastic perturbations. In addition, three numerical simulations of different situation and dimension are presented to illustrate the effectiveness and feasibility of the theoretical results.  相似文献   

4.
In this paper, the robust synchronization problem for a class of stochastic delayed complex networks with switching topology and unmodeled dynamics is investigated by using the adaptive control scheme. Different from some existing uncertain complex network models, the uncertain terms in the complex networks are only needed to be bounded. Based on the stability theory of stochastic delayed differential equation, a novel adaptive controller which ensures that all the nodes in the complex networks robustly synchronize with the target node is derived. Finally, a numerical example is provided to show the effectiveness of the proposed method.  相似文献   

5.
In this paper, the problem of stochastic stability for a class of delayed neural networks of neutral type with Markovian jump parameters is investigated. The jumping parameters are modelled as a continuous-time, discrete-state Markov process. A sufficient condition guaranteeing the stochastic stability of the equilibrium point is derived for the Markovian jumping delayed neural networks (MJDNNs) with neutral type. The stability criterion not only eliminates the differences between excitatory and inhibitory effects on the neural networks, but also can be conveniently checked. The sufficient condition obtained can be essentially solved in terms of linear matrix inequality. A numerical example is given to show the effectiveness of the obtained results.  相似文献   

6.
This paper investigates the general decay pathwise stability conditions on a class of stochastic neural networks with mixed delays by applying Lasalle method. The mixed time delays comprise both time-varying delays and infinite distributed delays. The contributions are as follows: (1)?we extend the Lasalle-type theorem to cover stochastic differential equations with mixed delays; (2)?based on the stochastic Lasalle theorem and the M-matrix theory, new criteria of general decay stability, which includes the almost surely exponential stability and the almost surely polynomial stability and the partial stability, for neural networks with mixed delays are established. As an application of our results, this paper also considers a two-dimensional delayed stochastic neural networks model.  相似文献   

7.
In this paper, the asymptotic stability for a class of stochastic neural networks with time-varying delays and impulsive effects are considered. By employing the Lyapunov functional method, combined with linear matrix inequality optimization approach, a new set of sufficient conditions are derived for the asymptotic stability of stochastic delayed recurrent neural networks with impulses. A numerical example is given to show that the proposed result significantly improve the allowable upper bounds of delays over some existing results in the literature.  相似文献   

8.
In this paper, we investigate exponential stability for stochastic BAM networks with mixed delays. The mixed delays include discrete and distributed time-delays. The purpose of this paper is to establish some criteria to ensure the delayed stochastic BAM neural networks are exponential stable in the mean square. A sufficient condition is established by consructing suitable Lyapunov functionals. The condition is expressed in terms of the feasibility to a couple LMIs. Therefore, the exponential stability of the stochastic BAM networks with discrete and distributed delays can be easily checked by using the numerically efficient Matlab LMI toobox. A simple example is given to demonstrate the usefulness of the derived LMI-based stability conditions.  相似文献   

9.
In this paper, the mean-square exponential stability is investigated for multi-linked stochastic delayed complex networks with stochastic hybrid impulses. Distinct from the existing literature, we study the MSDCNs on the basis of the multi-linked stochastic functional differential equations that consider the impact of a certain past interval on the present. Moreover, the stochastic hybrid impulses we discuss possess stochastic impulsive moments and impulsive gain, which make the impulses fit better to the real-world demands for control. Also, a novel concept of average stochastic impulsive gain is proposed to measure the intensity of the stochastic hybrid impulses. By the use of Dupire Itô’s formula, based on Lyapunov method, graph theory and stochastic analysis techniques, two sufficient criteria for the mean-square exponential stability are derived, which are closely related to average stochastic impulsive gain, stochastic disturbance strength as well as the topological structure of the network itself. Finally, an application about neural networks is discussed and corresponding numerical example is presented to demonstrate the feasibility and effectiveness of the theoretical results.  相似文献   

10.
Complex networks are widespread in real-world systems of engineering, physics, biology, and sociology. This paper is concerned with the problem of synchronization for stochastic discrete-time drive-response networks. A dynamic feedback controller has been proposed to achieve the goal of the paper. Then, based on the Lyapunov second method and LMI (linear matrix inequality) optimization approach, a delay-independent stability criterion is established that guarantees the asymptotical mean-square synchronization of two identical delayed networks with stochastic disturbances. The criterion is expressed in terms of LMIs, which can be easily solved by various convex optimization algorithms. Finally, two numerical examples are given to illustrate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号