首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

2.
In the present paper, we show that there exist a bounded, holomorphic function $\[f(z) \ne 0\]$ in the domain $\[\{ z = x + iy:\left| y \right| < \alpha \} \]$ such that $\[f(z)\]$ has a Dirichlet expansion $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ in the halfplane $\[x > {x_f}\]$ if and only if $\[\frac{a}{\pi }\log r - \sum\limits_{{u_n} < r} {\frac{2}{{{u_n}}}} \]$ has a finite upperbound on $\[[1, + \infty )\]$, where $\[\alpha \]$ is a positive constant,$\[{x_f}( < + \infty )\]$ is the abscissa of convergence of $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ and the infinite sequence $\[\{ {u_n}\} \]$ satisfies $\[\mathop {\lim }\limits_{n \to + \infty } ({u_{n + 1}} - {u_n}) > 0\]$. We also point out some necessary conditions and sufficient ones Such that a bounded holomorphic function in an angular(or half-band) domain is identically zero if an infinite sequence of its derivatives and itself vanish at some point of the domain. Here some result are generalizations of those in [4].  相似文献   

3.
Let \[f(z) = z + \sum\limits_{n = 1}^\infty {{a_n}{z^n} \in S} {\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \log \frac{{f(z) - f(\xi )}}{{z - \xi }} - \frac{{z\xi }}{{f(z)f(\xi )}} = \sum\limits_{m,n = 1}^\infty {{d_{m,n}}{z^m}{\xi ^n},} \], we denote \[{f_v} = f({z_v})\] , \[\begin{array}{l} {\varphi _\varepsilon }({z_u}{z_v}) = {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\frac{1}{{(1 - {z_u}{{\bar z}_v})}},\g_m^\varepsilon (z) = - {F_m}(\frac{1}{{f(z)}}) + \frac{1}{{{z^m}}} + \varepsilon {{\bar z}^m}, \end{array}\], where \({F_m}(t)\) is a Faber polynomial of degree m. Theorem 1. If \[f(z) \in S{\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{u,v = 1}^N {{A_{u,v}}{x_u}{{\bar x}_v} \ge 0} \] and then \[\begin{array}{l} \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\exp \{ \alpha {F_l}({z_u},{z_v})\} \ \le \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} \varphi _\varepsilon ^\alpha ({z_u}{z_v})l = 1,2,3, \end{array}\], where \[\begin{array}{l} {F_1}({z_u},{z_v}) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} g_n^\varepsilon ({z_u})\bar g_n^\varepsilon ({z_v}),\{F_2}({z_u},{z_v}) = \frac{1}{{1 + {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}),\{F_3}({z_u},{z_v}) = \frac{1}{{1 - {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}). \end{array}\] The \[F({z_u},{z_v}) = \frac{1}{2}{g_1}({z_u}){{\bar g}_2}({z_v})\] is due to Kungsun. Theorem 2. If \(f(z) \in S\) ,then \[P(z) + \left| {\sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {{\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}\frac{{{z_u}{z_v}}}{{{f_u}{f_v}}}} \right|}^\varepsilon }} \right| \le \sum\limits_{u,v = 1}^N {{\lambda _u}{{\bar \lambda }_v}} \frac{1}{{1 - {z_u}{{\bar z}_v}}}\], where \[\begin{array}{l} P(z) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} {G_n}(z),\{G_n}(z) = {\left| {\left| {\sum\limits_{n = 1}^N {{\beta _u}({F_n}(\frac{1}{{f({z_u})}}) - \frac{1}{{z_u^n}})} } \right| - \left| {\sum\limits_{n = 1}^N {{\beta _u}z_u^n} } \right|} \right|^2}, \end{array}\], \(P(z) \equiv 0\) is due to Xia Daoxing.  相似文献   

4.
Let S~* be the class of functionsf(z)analytic,univalent in the unit disk|z|<1 andmap|z|<1 onto a region which is starlike with respect to w=0 and is denoted as D_f.Letr_0=r_0(f)be the radius of convexity of f(2).In this note,the author proves the following result:(d_0/d~*)≥0.4101492,where d_0= f(z),d~*=|β|.  相似文献   

5.
Let $\[{S_k}\]$ be the class of functions $\[f(z) = z + \sum\limits_{m = 1}^\infty {b_{mk + 1}^{(k)}{z^{mk + 1}}} \]$ which are regular and univalent in $\[\left| z \right| < 1\]$ and denote $\[S_n^{(k)}(z) = z + \sum\limits_{m = 1}^\infty {b_{mk + 1}^{(k)}{z^{mk + 1}}} \]$. The authors prove that the functions $\[S_n^{(2)}(z)\]$ are starlike in $\[\left| z \right| < \frac{1}{{\sqrt 3 }}\]$.  相似文献   

6.
The paper proves on the basis of [1] the following theorem: Let $\[f(z)\]$ be an entire function of lower order $\[\mu < \infty \]$, and $\[{a_i}(z)(l = 1,2, \cdots ,k)\]$ be meromorphic functions which satisfy $\[T(r,{a_i}(z)) = o\{ T(r,f)\} \]$. If $$\[\sum\limits_{i = 1}^k {\delta ({a_i}(z),f) = 1\begin{array}{*{20}{c}} {({a_i}(z) \ne \infty )}&{(1)} \end{array}} \]$$ then the deficiencies $\[\delta ({a_i}(z),f)\]$ are equal to $\[\frac{{{n_1}}}{\mu }\]$, where $\[{n_i}\]$ is an integer,$\[l = 1,2, \cdots ,k\]$.  相似文献   

7.
Let the function f(z)=z sum from n=2 to ∞ a_nz~n ∈ S. It is obtained that-2.793<|a_n 1|-|a_n|<3.26,which is an improvement of the result in [1] or [2].  相似文献   

8.
Based on [3] and [4],the authors study strong convergence rate of the k_n-NNdensity estimate f_n(x)of the population density f(x),proposed in [1].f(x)>0 and fsatisfies λ-condition at x(0<λ≤2),then for properly chosen k_nlim sup(n/(logn)~(λ/(1 2λ))丨_n(x)-f(x)丨C a.s.If f satisfies λ-condition,then for propeoly chosen k_nlim sup(n/(logn)~(λ/(1 3λ)丨_n(x)-f(x)丨C a.s.,where C is a constant.An order to which the convergence rate of 丨_n(x)-f(x)丨andsup 丨_n(x)-f(x)丨 cannot reach is also proposed.  相似文献   

9.
The number $\[A({d_1}, \cdots ,{d_n})\]$ of solutions of the equation $$\[\sum\limits_{i = 0}^n {\frac{{{x_i}}}{{{d_i}}}} \equiv 0(\bmod 1),0 < {x_i} < {d_i}(i = 1,2, \cdots ,n)\]$$ where all the $\[{d_i}s\]$ are positive integers, is of significance in the estimation of the number $\[N({d_1}, \cdots {d_n})\]$ of solutiohs in a finite field $\[{F_q}\]$ of the equation $$\[\sum\limits_{i = 1}^n {{a_i}x_i^{{d_i}}} = 0,{x_i} \in {F_q}(i = 1,2, \cdots ,n)\]$$ where all the $\[a_i^''s\]$ belong to $\[F_q^*\]$. the multiplication group of $\[F_q^{[1,2]}\]$. In this paper, applying the inclusion-exclusion principle, a greneral formula to compute $\[A({d_1}, \cdots ,{d_n})\]$ is obtained. For some special cases more convenient formulas for $\[A({d_1}, \cdots ,{d_n})\]$ are also given, for example, if $\[{d_i}|{d_{i + 1}},i = 1, \cdots ,n - 1\]$, then $$\[A({d_1}, \cdots ,{d_n}) = ({d_{n - 1}} - 1) \cdots ({d_1} - 1) - ({d_{n - 2}} - 1) \cdots ({d_1} - 1) + \cdots + {( - 1)^n}({d_2} - 1)({d_1} - 1) + {( - 1)^n}({d_1} - 1).\]$$  相似文献   

10.
Consider the higher-order neutral delay differential equationd~t/dt~n(x(t)+sum from i=1 to lp_ix(t-τ_i)-sum from j=1 to mr_jx(t-ρ_j))+sum from k=1 to Nq_kx(t-u_k)=0,(A)where the coefficients and the delays are nonnegative constants with n≥2 even. Then anecessary and sufficient condition for the oscillation of (A) is that the characteristicequationλ~n+λ~nsum from i=1 to lp_ie~(-λτ_i-λ~n)sum from j=1 to mr_je~(-λρ_j)+sum from k=1 to Nq_ke~(-λρ_k)=0has no real roots.  相似文献   

11.
The paper considers the random L-Dirichlet seriesf(s,ω)=sum from n=1 to ∞ P_n(s,ω)exp(-λ_ns)and the random B-Dirichlet seriesψτ_0(s,ω)=sum from n=1 to ∞ P_n(σ iτ_0,ω)exp(-λ_ns),where {λ_n} is a sequence of positive numbers tending strictly monotonically to infinity, τ_0∈R is a fixed real number, andP_n(s,ω)=sum from j=1 to m_n ε_(nj)a_(nj)s~ja random complex polynomial of order m_n, with {ε_(nj)} denoting a Rademacher sequence and {a_(nj)} a sequence of complex constants. It is shown here that under certain very general conditions, almost all the random entire functions f(s,ω) and ψ_(τ_0)(s,ω) have, in every horizontal strip, the same order, given byρ=lim sup((λ_nlogλ_n)/(log A_n~(-1)))whereA_n=max |a_(nj)|.Similar results are given if the Rademacher sequence {ε_(nj)} is replaced by a steinhaus seqence or a complex normal sequence.  相似文献   

12.
In this paper the following result is established: For a_i,f\in \phi(R^K),i=1,\cdots,n and $T(a,f)(x)=w(x,D)()[\prod\limits_{i = 1}^n {{P_{{m_i}}}({a_i},x, \cdot )f( \cdot )} \]$ It holds that $||T(a,f)||_q\leq C||f||_p_0[\prod\limits_{i = 1}^n {||{\nabla ^{{m_i}}}|{|_{{p_i}}}} \]$ where a=(a_1,\cdots,a_n), q^-1=p^-1_0+[\sum\limits_{i = 1}^n {p_i^{ - 1} \in (0,1),\forall i,{p_i} \in (1,\infty )} \] or \forall i,p_i=\infinity,p_0\in (1,\infinity), for an integer m_i\geq 0, $P_m_m(a_i,x,y)=a_i(x)-[\sum\limits_{|\beta | < {m_i}} {\frac{{a_i^{(\beta )}(y)}}{{\beta !}}} {(x - y)^\beta }\]$ w(x,\xi) is a classical symbol of order |m|, m=(m_1,\cdots, m_n), |m|=m_1+\cdots+m_n, m_i are nonnegative integers. Besides, a representation theorem is given. The methods used here closely follow those developed by Coifman, R. and Meyer, Y. in [5] and by Cohen, J. in [3].  相似文献   

13.
Let L(x) denote the number of square-full integers not exceeding x. It is proved in [1] thatL(x)~(ζ(3/2)/ζ(3))x~(1/2) (ζ(2/3)/ζ(2))x~(1/3) as x→∞,where ζ(s) denotes the Riemann zeta function. Let △(x) denote the error function in the asymptotic formula for L(x). It was shown by D. Suryanaryana~([2]) on the Riemann hypothesis (RH) that1/x integral from n=1 to x |△(t)|dt=O(x~(1/10 s))for every ε>0. In this paper the author proves the following asymptotic formula for the mean-value of △(x) under the assumption of R. H.integral from n=1 to T (△~2(t/t~(6/5))) dt~c log T,where c>0 is a constant.  相似文献   

14.
The authors establish sufficient conditions for the oscillation of all solution of neutral delay differential equations of even and odd order of the form $$\[\frac{{{d^n}}}{{d{t^n}}}[y(t) + p(t)y(t - \tau )] + Q(t)y(t - C) = 0,t \ge {t_0},\]$$ where $\[P,Q \in C[[{t_0},\infty ),R],\tau ,\sigma \in {R^ + }\]$ and $\[n \ge 1\]$.  相似文献   

15.
Suppose that there is a variance components model $$\[\left\{ {\begin{array}{*{20}{c}} {E\mathop Y\limits_{n \times 1} = \mathop X\limits_{n \times p} \mathop \beta \limits_{p \times 1} }\{DY = \sigma _2^2{V_1} + \sigma _2^2{V_2}} \end{array}} \right.\]$$ where $\[\beta \]$,$\[\sigma _1^2\]$ and $\[\sigma _2^2\]$ are all unknown, $\[X,V > 0\]$ and $\[{V_2} > 0\]$ are all known, $\[r(X) < n\]$. The author estimates simultaneously $\[(\sigma _1^2,\sigma _2^2)\]$. Estimators are restricted to the class $\[D = \{ d({A_1}{A_2}) = ({Y^''}{A_1}Y,{Y^''}{A_2}Y),{A_1} \ge 0,{A_2} \ge 0\} \]$. Suppose that the loss function is $\[L(d({A_1},{A_2}),(\sigma _1^2,\sigma _2^2)) = \frac{1}{{\sigma _1^4}}({Y^''}{A_1}Y - \sigma _1^2) + \frac{1}{{\sigma _2^4}}{({Y^''}{A_2}Y - \sigma _2^2)^2}\]$. This paper gives a necessary and sufficient condition for $\[d({A_1},{A_2})\]$ to be an equivariant D-asmissible estimator under the restriction $\[{V_1} = {V_2}\]$, and a sufficient condition and a necessary condition for $\[d({A_1},{A_2})\]$ to equivariant D-asmissible without the restriction.  相似文献   

16.
This note is concerned with the equation $$\[\frac{{{d^2}x}}{{d{t^2}}} + g(x) = p(t)\begin{array}{*{20}{c}} {}&{(1)} \end{array}\]$$ where g(x) is a continuously differentiable function of a $\[x \in R\]$, $\[xg(x) > 0\]$ whenever $\[x \ne 0\]$, and $\[g(x)/x\]$ tends to $\[\infty \]$ as \[\left| x \right| \to \infty \]. Let p(t) be a bounded function of $\[t \in R\]$. Define its norm by $\[\left\| p \right\| = {\sup _{t \in R}}\left| {p(t)} \right|\]$ The study of this note leads to the following conclusion which improves a result due to J. E. Littlewood, For any given small constants $\[\alpha > 0,s > 0\]$, there is a continuous and roughly periodic(with respect to $\[\Omega (\alpha )\]$) function p(t) with $\[\left\| p \right\| < s\]$ such that the corresponding equation (1) has at least one unbounded solution.  相似文献   

17.
To answer the rest part of the problem of Boas R. P. on derivative of polynomial, it is shown that if $\[p(z)\]$ is a polynomial of degree n such that $\[\mathop {\max }\limits_{\left| z \right| \le 1} \left| {p(z)} \right| \le 1\]$ and $\[{p(z) \ne 0}\]$ in $\[\left| z \right| \le k,0 < k \le 1\]$, then $\[\left| {{p^''}(z)} \right| \le n/(1 + {k^n})\]$ for $\[\left| z \right| \le 1\]$. The above estimate is sharp and the equation holds for $\[p(z) = ({z^n} + {k^n})/(1 + {k^n})\]$.  相似文献   

18.
Let β 〉 0 and Sβ := {z ∈ C : |Imz| 〈β} be a strip in the complex plane. For an integer r ≥ 0, let H∞^Г,β denote those real-valued functions f on R, which are analytic in Sβ and satisfy the restriction |f^(r)(z)| ≤ 1, z ∈ Sβ. For σ 〉 0, denote by Bσ the class of functions f which have spectra in (-2πσ, 2πσ). And let Bσ^⊥ be the class of functions f which have no spectrum in (-2πσ, 2πσ). We prove an inequality of Bohr type
‖f‖∞≤π/√λ∧σ^r∑k=0^∞(-1)^k(r+1)/(2k+1)^rsinh((2k+1)2σβ),f∈H∞^r,β∩B1/σ,
where λ∈(0,1),∧and ∧′are the complete elliptic integrals of the first kind for the moduli λ and λ′=√1- λ^2,respectively,and λ satisfies
4∧β/π∧′=1/σ.
The constant in the above inequality is exact.  相似文献   

19.
Consider the nonlinear inltial-boundary value problem for quasilinear hyperbolicsystem:Let k≥2[n/2] 6,(F,g)∈ H~k(R_ ;Ω)×H~k(R_ ;Ω),and their traces at t=0 are zeroup to the order k-1.If for u=0,the problem(*)at t=0 is a Kreiss hyperbolic system,and the boundaryconditions satisfy the uniformly Lopatinsky criteria,then there exists a T>0 such that(*)has a unique H~k soluton in(0,T).In the Appendix,for symmetric hyperbolic systems,a comparison between theuniformly Lopatinsky condition and the stable admissible condition is given.  相似文献   

20.
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l} (a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b). \end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let \[\begin{array}{l} {\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}. \end{array}\] We have proved the following results: Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}} {a \le x \le b}\{a \le z \le b} \end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\). Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号