首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this work, a gradient method with momentum for BP neural networks is considered. The momentum coefficient is chosen in an adaptive manner to accelerate and stabilize the learning procedure of the network weights. Corresponding convergence results are proved.  相似文献   

2.
The inverse problem considered in this paper is to determine the shape and the impedance of an obstacle from a knowledge of the time-harmonic incident field and the phase and amplitude of the far field pattern of the scattered wave in two-dimension. Single-layer potential is used to approach the scattered waves. An approximation method is presented and the convergence of the proposed method is established. Numerical examples are given to show that this method is both accurate and easy to use.  相似文献   

3.
We consider an inverse quadratic programming (IQP) problem in which the parameters in the objective function of a given quadratic programming (QP) problem are adjusted as little as possible so that a known feasible solution becomes the optimal one. This problem can be formulated as a minimization problem with a positive semidefinite cone constraint and its dual (denoted IQD(A, b)) is a semismoothly differentiable (SC^1) convex programming problem with fewer variables than the original one. In this paper a smoothing Newton method is used for getting a Karush-Kuhn-Tucker point of IQD(A, b). The proposed method needs to solve only one linear system per iteration and achieves quadratic convergence. Numerical experiments are reported to show that the smoothing Newton method is effective for solving this class of inverse quadratic programming problems.  相似文献   

4.
This paper is devoted to the mathematical analysis of a general recursive linearization algorithm for solving inverse medium problems with multi-frequency measurements. Under some reasonable assumptions, it is shown that the algorithm is convergent with error estimates. The work is motivated by our effort to analyze recent significant numerical results for solving inverse medium problems. Based on the uncertainty principle, the recursive linearization allows the nonlinear inverse problems to be reduced to a set of linear problems and be solved recursively in a proper order according to the measurements. As an application, the convergence of the recursive linearization algorithm [Chen, Inverse Problems 13(1997), pp.253-282] is established for solving the acoustic inverse scattering problem.  相似文献   

5.
We build finite difference schemes for a class of fully nonlinear parabolic equations. The schemes are polyhedral and grid aligned. While this is a restrictive class of schemes, a wide class of equations are well approximated by equations from this class. For regular (C2,α) solutions of uniformly parabolic equations, we also establish of convergence rate of O(α). A case study along with supporting numerical results is included.  相似文献   

6.
In this work, we solve a long-standing open problem: Is it true that the convergence rate of the Lions' Robin-Robin nonoverlapping domain decomposition (DD) method can be constant, independent of the mesh size h? We closed this old problem with a positive answer. Our theory is also verified by numerical tests.  相似文献   

7.
For large and sparse saddle point problems, Zhu studied a class of generalized local Hermitian and skew-Hermitian splitting iteration methods for non-Hermitian saddle point problem [M.-Z. Zhu, Appl. Math. Comput. 218 (2012) 8816-8824 ]. In this paper, we further investigate the generalized local Hermitian and skew-Hermitian splitting (GLHSS) iteration methods for solving non-Hermitian generalized saddle point problems. With different choices of the parameter matrices, we derive conditions for guaranteeing the con- vergence of these iterative methods. Numerical experiments are presented to illustrate the effectiveness of our GLHSS iteration methods as well as the preconditioners.  相似文献   

8.
The main purpose of this work is to provide a novel numerical approach for the Volterra integral equations based on a spectral approach. A Legendre-collocation method is proposed to solve the Volterra integral equations of the second kind. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical results confirm the theoretical prediction of the exponential rate of convergence. The result in this work seems to be the first successful spectral approach (with theoretical justification) for the Volterra type equations.  相似文献   

9.
We consider an adaptive finite element method (AFEM) for obstacle problems associated with linear second order elliptic boundary value problems and prove a reduction in the energy norm of the discretization error which leads to R-linear convergence. This result is shown to hold up to a consistency error due to the extension of the discrete multipliers (point functionals) to H^-1 and a possible mismatch between the continuous and discrete coincidence and noncoincidence sets. The AFEM is based on a residual-type error estimator consisting of element and edge residuals. The a posteriori error analysis reveals that the significant difference to the unconstrained case lies in the fact that these residuals only have to be taken into account within the discrete noncoincidence set. The proof of the error reduction property uses the reliability and the discrete local efficiency of the estimator as well as a perturbed Galerkin orthogonality. Numerical results are given illustrating the performance of the AFEM.  相似文献   

10.
In this paper, a discontinuous finite element method for the positive and symmetric, first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzed by using linear triangle elements, and the O(h^2)-order optimal error estimates are derived under the assumption of strongly regular triangulation and the Ha-regularity for the exact solutions. The convergence analysis is based on some superclose estimates of the interpolation approximation. Finally, we discuss the Maxwell equations in a two-dimensional domain, and numerical experiments are given to validate the theoretical results.  相似文献   

11.
The generalized successive overrelaxation (GSOR) method was presented and studied by Bai, Parlett and Wang [Numer. Math. 102(2005), pp.1-38] for solving the augmented system of linear equations, and the optimal iteration parameters and the corresponding optimal convergence factor were exactly obtained. In this paper, we further estimate the contraction and the semi-contraction factors of the GSOR method. The motivation of the study is that the convergence speed of an iteration method is actually decided by the contraction factor but not by the spectral radius in finite-step iteration computations. For the nonsingular augmented linear system, under some restrictions we obtain the contraction domain of the parameters involved, which guarantees that the contraction factor of the GSOR method is less than one. For the singular but consistent augmented linear system, we also obtain the semi-contraction domain of the parameters in a similar fashion. Finally, we use two numerical examples to verify the theoretical results and the effectiveness of the GSOR method.  相似文献   

12.
In this paper, we present a parallel quasi-Chebyshev acceleration applied to the nonover- lapping multisplitting iterative method for the linear systems when the coefficient matrix is either an H-matrix or a symmetric positive definite matrix. First, m parallel iterations are implemented in m different processors. Second, based on l1-norm or l2-norm, the m opti- mization models are parallelly treated in m different processors. The convergence theories are established for the parallel quasi-Chebyshev accelerated method. Finally, the numeri- cal examples show that the parallel quasi-Chebyshev technique can significantly accelerate the nonoverlapping multisplitting iterative method.  相似文献   

13.
In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and D6fler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic partial equations is proved. Our analysis is effective for all conforming Qm elements which covers both the two- and three-dimensional cases in a unified fashion.  相似文献   

14.
In this paper we continue the study of discontinuous Galerkin finite element methods for nonlinear diffusion equations following the direct discontinuous Galerkin (DDG) meth- ods for diffusion problems [17] and the direct discontinuous Galerkin (DDG) methods for diffusion with interface corrections [18]. We introduce a numerical flux for the test func- tion, and obtain a new direct discontinuous Galerkin method with symmetric structure. Second order derivative jump terms are included in the numerical flux formula and explicit guidelines for choosing the numerical flux are given. The constructed scheme has a sym- metric property and an optimal L2 (L2) error estimate is obtained. Numerical examples are carried out to demonstrate the optimal (k + 1)th order of accuracy for the method with pk polynomial approximations for both linear and nonlinear problems, under one-dimensional and two-dimensional settings.  相似文献   

15.
The convergence analysis on the general iterative methods for the symmetric and positive semidefinite problems is presented in this paper. First, formulated are refined necessary and sumcient conditions for the energy norm convergence for iterative methods. Some illustrative examples for the conditions are also provided. The sharp convergence rate identity for the Gauss-Seidel method for the semidefinite system is obtained relying only on the pure matrix manipulations which guides us to obtain the convergence rate identity for the general successive subspace correction methods. The convergence rate identity for the successive subspace correction methods is obtained under the new conditions that the local correction schemes possess the local energy norm convergence. A convergence rate estimate is then derived in terms of the exact subspace solvers and the parameters that appear in the conditions. The uniform convergence of multigrid method for a model problem is proved by the convergence rate identity. The work can be regradled as unified and simplified analysis on the convergence of iteration methods for semidefinite problems [8, 9].  相似文献   

16.
In this work, we focus on designing efficient numerical schemes to approximate a ther- modynamically consistent Navier-Stokes/Cahn-Hilliard problem given in [3] modeling the mixture of two incompressible fluids with different densities. The model is based on a diffuse-interface phase-field approach that is able to describe topological transitions like droplet coalescense or droplet break-up in a natural way. We present a splitting scheme, decoupling computations of the Navier-Stokes part from the Cahn-Hilliard one, which is unconditionally energy-stable up to the choice of the potential approximation. Some nu- merical experiments are carried out to validate the correctness and the accuracy of the scheme, and to study the sensitivity of the scheme with respect to different physical pa- rameters.  相似文献   

17.
Streamsurfaces in diffusion tensor fields are used to represent structures with pri- marily planar diffusion. So far, however, no effort has been made on the visualization of the anisotropy of diffusion on them, although this information is very important to identify the problematic regions of these structures. We propose two methods to display this anisotropy information. The first one employs a set of merging ellipsoids, which simultaneously character- ize the local tensor details - anisotropy - on them and portray the shape of the streamsurfaces. The weight between the streamsurfaces continuity and the discrete local tensors can be inter- actively adjusted by changing some given parameters. The second one generates a dense LIC (line integral convolution) texture of the two tangent eigenvector fields along the streamsurfaces firstly, and then blends in some color mapping indicating the anisotropy information. For high speed and high quality of texture images, we confine both the generation and the advection of the LIC texture in the image space. Merging ellipsoids method reveals the entire anisotropy information at discrete points by exploiting the geometric attribute of ellipsoids, and thus suits for local and detailed examination of the anisotropy; the texture-based method gives a global representation of the anisotropy on the whole streamsurfaces with texture and color attributes. To reveal the anisotropy information more efficiently, we integrate the two methods and use them at two different levels of details.  相似文献   

18.
Structural models of credit risk are known to present vanishing spreads at very short maturitiesThis shortcoming, which is due to the diffusive behavior assumed for asset values, can be circumvented by considering discontinuities of the jump type in their evolution over timeIn this paper, we extend the pricing model for corporate bond and determine the default probability in jump-diffusion model to address this issueTo make the problem clearly,we first investigate the case that the firm value follows a geometric Brownian motion under similar assumptions to those in Black and Scholes(1973), Briys and de Varenne(1997), i.e, the default barrier is KD(t, T) and the recovery rate is(1- ω), where D(t, T) is the price of zero coupon default free bond and ω is a constant(0 ω≤ 1)By changing the numeraire, we obtain the closed-form solution for both the price of bond and default probabilityFurther, we consider the case of jump-diffusion and suppose that a firm will go bankruptcy if its value Vt ≤ KD(t, T)and at the same time, the bondholder will receive(1- ω)Vt KBy introducing the Green function of PDE with absorbing boundary and converting the problem to an II-type Volterra integral equation, we get the closed-form expressions in series form for bond price and corresponding default probabilityNumerical results are presented to show the impact of different parameters to credit spread of bond.  相似文献   

19.
In this paper, we study variational discretization for the constrained optimal control problem governed by convection dominated diffusion equations, where the state equation is approximated by the edge stabilization Galerkin method. A priori error estimates are derived for the state, the adjoint state and the control. Moreover, residual type a posteriori error estimates in the L^2-norm are obtained. Finally, two numerical experiments are presented to illustrate the theoretical results.  相似文献   

20.
This paper is devoted to the study of a class of singular nonlinear diffusion problem. The existence and uniqueness of solutions are obtained. Moreover, some properties of solutions such as blow-up property etc. are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号