首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
An optimization-based approach to assess both strong non-deterministic non- interference (SNNI) and bisimulation SNNI (BSNNI) in discrete event systems modeled as labeled Petri nets is presented in this paper. The assessment of SNNI requires the solution of feasibility problems with integer variables and linear constraints, which is derived by extending a previous result given in the case of unlabeled net systems. Moreover, the BSNNI case can be addressed in two different ways. First, similarly to the case of SNNI, a condition to assess BSNNI, which is necessary and sufficient, can be derived from the one given in the unlabeled framework, requiring the solution of feasibility problems with integer variables and linear constraints. Then, a novel necessary and sufficient condition to assess BSNNI is given, which requires the solution of integer feasibility problems with nonlinear constraints. Furthermore, we show how to recast these problems into equivalent mixed-integer linear programming (MILP) ones. The effectiveness of the proposed approaches is shown by means of several examples. It turns out that there are relevant cases where the new condition to assess BSNNI that requires the solution of MILP problems is computationally more efficient, when compared to the one that requires the solution of feasibility problems.  相似文献   

2.
We propose two primal heuristics for nonconvex mixed-integer nonlinear programs. Both are based on the idea of rounding the solution of a continuous nonlinear program subject to linear constraints. Each rounding step is accomplished through the solution of a mixed-integer linear program. Our heuristics use the same algorithmic scheme, but they differ in the choice of the point to be rounded (which is feasible for nonlinear constraints but possibly fractional) and in the linear constraints. We propose a feasibility heuristic, that aims at finding an initial feasible solution, and an improvement heuristic, whose purpose is to search for an improved solution within the neighborhood of a given point. The neighborhood is defined through local branching cuts or box constraints. Computational results show the effectiveness in practice of these simple ideas, implemented within an open-source solver for nonconvex mixed-integer nonlinear programs.  相似文献   

3.
This paper presents a review of advances in the mathematical programming approach to discrete/continuous optimization problems. We first present a brief review of MILP and MINLP for the case when these problems are modeled with algebraic equations and inequalities. Since algebraic representations have some limitations such as difficulty of formulation and numerical singularities for the nonlinear case, we consider logic-based modeling as an alternative approach, particularly Generalized Disjunctive Programming (GDP), which the authors have extensively investigated over the last few years. Solution strategies for GDP models are reviewed, including the continuous relaxation of the disjunctive constraints. Also, we briefly review a hybrid model that integrates disjunctive programming and mixed-integer programming. Finally, the global optimization of nonconvex GDP problems is discussed through a two-level branch and bound procedure.  相似文献   

4.
We present Undercover, a primal heuristic for nonconvex mixed-integer nonlinear programs (MINLPs) that explores a mixed-integer linear subproblem (sub-MIP) of a given MINLP. We solve a vertex covering problem to identify a smallest set of variables to fix, a so-called cover, such that each constraint is linearized. Subsequently, these variables are fixed to values obtained from a reference point, e.g., an optimal solution of a linear relaxation. Each feasible solution of the sub-MIP corresponds to a feasible solution of the original problem. We apply domain propagation to try to avoid infeasibilities, and conflict analysis to learn additional constraints from infeasibilities that are nonetheless encountered. We present computational results on a test set of mixed-integer quadratically constrained programs (MIQCPs) and MINLPs. It turns out that the majority of these instances allows for small covers. Although general in nature, we show that the heuristic is most successful on MIQCPs. It nicely complements existing root-node heuristics in different state-of-the-art solvers and helps to significantly improve the overall performance of the MINLP solver SCIP.  相似文献   

5.
We consider a production planning problem where the production process creates a mixture of desirable products and undesirable byproducts. In this production process, at any point in time the fraction of the mixture that is an undesirable byproduct increases monotonically as a function of the cumulative mixture production up to that time. The mathematical formulation of this continuous-time problem is nonconvex. We present a discrete-time mixed-integer nonlinear programming (MINLP) formulation that exploits the increasing nature of the byproduct ratio function. We demonstrate that this new formulation is more accurate than a previously proposed MINLP formulation. We describe three different mixed-integer linear programming (MILP) approximation and relaxation models of this nonconvex MINLP, and we derive modifications that strengthen the linear programming relaxations of these models. We also introduce nonlinear programming formulations to choose piecewise-linear approximations and relaxations of multiple functions that share the same domain and use the same set of break points in the domain. We conclude with computational experiments that demonstrate that the proposed formulation is more accurate than the previous formulation, and that the strengthened MILP approximation and relaxation models can be used to obtain provably near-optimal solutions for large instances of this nonconvex MINLP. Experiments also illustrate the quality of the piecewise-linear approximations produced by our nonlinear programming formulations.  相似文献   

6.
The siting and sizing of electrical substations on a rectangular electrical grid can be formulated as an integer programming problem with a quadratic objective and linear constraints. We propose a novel approach that is based on solving a sequence of local relaxations of the problem for a given number of substations. Two methods are discussed for determining a new location from the solution of the relaxed problem. Each leads to a sequence of strictly improving feasible integer solutions. The number of substations is then modified to seek a further reduction in cost. Lower bounds for the solution are also provided by solving a sequence of mixed-integer linear programs. Results are provided for a variety of uniform and Gaussian load distributions as well as some real examples from an electric utility. The results of gams/dicopt, gams/sbb, gams/baron and cplex applied to these problems are also reported. Our algorithm shows slow growth in computational effort with the number of integer variables.  相似文献   

7.
Mixed-integer nonlinear programming (MINLP) problems involving general constraints and objective functions with continuous and integer variables occur frequently in engineering design, chemical process industry and management. Although many optimization approaches have been developed for MINLP problems, these methods can only handle signomial terms with positive variables or find a local solution. Therefore, this study proposes a novel method for solving a signomial MINLP problem with free variables to obtain a global optimal solution. The signomial MINLP problem is first transformed into another one containing only positive variables. Then the transformed problem is reformulated as a convex mixed-integer program by the convexification strategies and piecewise linearization techniques. A global optimum of the signomial MINLP problem can finally be found within the tolerable error. Numerical examples are also presented to demonstrate the effectiveness of the proposed method.  相似文献   

8.
We describe a procedure to reduce variable bounds in mixed integer nonlinear programming (MINLP) as well as mixed integer linear programming (MILP) problems. The procedure works by combining pairs of inequalities of a linear programming (LP) relaxation of the problem. This bound reduction procedure extends the feasibility based bound reduction technique on linear functions, used in MINLP and MILP. However, it can also be seen as a special case of optimality based bound reduction, a method to infer variable bounds from an LP relaxation of the problem. For an LP relaxation with m constraints and n variables, there are O(m 2) pairs of constraints, and a naïve implementation of our bound reduction scheme has complexity O(n 3) for each pair. Therefore, its overall complexity O(m 2 n 3) can be prohibitive for relatively large problems. We have developed a more efficient procedure that has complexity O(m 2 n 2), and embedded it in two Open-Source solvers: one for MINLP and one for MILP. We provide computational results which substantiate the usefulness of this bound reduction technique for several instances.  相似文献   

9.
We study valid inequalities for optimization models that contain both binary indicator variables and separable concave constraints. These models reduce to a mixed-integer linear program (MILP) when the concave constraints are ignored, or to a nonconvex global optimization problem when the binary restrictions are ignored. In algorithms designed to solve these problems to global optimality, cutting planes to strengthen the relaxation are traditionally obtained using valid inequalities for the MILP only. We propose a technique to obtain valid inequalities that are based on both the MILP constraints and the concave constraints. We begin by characterizing the convex hull of a four-dimensional set consisting of a single binary indicator variable, a single concave constraint, and two linear inequalities. Using this analysis, we demonstrate how valid inequalities for the single node flow set and for the lot-sizing polyhedron can be “tilted” to give valid inequalities that also account for separable concave functions of the arc flows. We present computational results demonstrating the utility of the new inequalities for nonlinear transportation problems and for lot-sizing problems with concave costs. To our knowledge, this is one of the first works that simultaneously convexifies both nonconvex functions and binary variables to strengthen the relaxations of practical mixed-integer nonlinear programs.  相似文献   

10.
The main objective of this work is to put forward chance constrained mixed-integer nonlinear stochastic and fuzzy programming models for refinery short-term crude oil scheduling problem under demands uncertainty of distillation units. The scheduling problem studied has characteristics of discrete events and continuous events coexistence, multistage, multiproduct, nonlinear, uncertainty and large scale. At first, the two models are transformed into their equivalent stochastic and fuzzy mixed-integer linear programming (MILP) models by using the method of Quesada and Grossmann [I. Quesada, I E. Grossmann, Global optimization of bilinear process networks with multicomponent flows, Comput. Chem. Eng. 19 (12) (1995) 1219–1242], respectively. After that, the stochastic equivalent model is converted into its deterministic MILP model through probabilistic theory. The fuzzy equivalent model is transformed into its crisp MILP model relies on the fuzzy theory presented by Liu and Iwamura [B.D. Liu, K. Iwamura, Chance constrained programming with fuzzy parameters, Fuzzy Sets Syst. 94 (2) (1998) 227–237] for the first time in this area. Finally, the two crisp MILP models are solved in LINGO 8.0 based on scheduling time discretization. A case study which has 267 continuous variables, 68 binary variables and 320 constraints is effectively solved with the solution approaches proposed.  相似文献   

11.
This paper considers the model discrimination problem among a finite number of models in safety–critical systems that are subjected to constraints that can be disjunctive and where state and input constraints can be coupled with each other. In particular, we consider both the optimal input design problem for active model discrimination that is solved offline as well as the online passive model discrimination problem via a model invalidation framework. To overcome the issues associated with non-convex and generalized semi-infinite constraints due to the disjunctive and coupled constraints, we propose some techniques for reformulating these constraints in a computationally tractable manner by leveraging the Karush–Kuhn–Tucker (KKT) conditions and introducing binary variables, thus recasting the active and passive model discrimination problems into tractable mixed-integer linear/quadratic programming (MILP/MIQP) problems. When compared with existing approaches, our method is able to obtain the optimal solution and is observed in simulations to also result in less computation time. Finally, we demonstrate the effectiveness of the proposed active model discrimination approach for estimating driver intention with disjunctive safety constraints and state–input coupled curvature constraints, as well as for fault identification.  相似文献   

12.
Flexible manufacturing systems (FMS) require intelligent scheduling strategies to achieve their principal benefit — combining high flexibility with high productivity. A mixed-integer linear programming model (MILP) is presented here for FMS scheduling. The model takes a global view of the problem and specifically takes into account constraints on storage and transportation. Both of these constrained resources are critical for practical FMS scheduling problems and are difficult to model. The MILP model is explained and justified and its complexity is discussed. Two heuristic procedures are developed, based on an analysis of the global MILP model. Computational results are presented comparing the performance of the different solution strategies. The development of iterative global heuristics based on mathematical programming formulations is advocated for a wide class of FMS scheduling problems.  相似文献   

13.
In many planning problems under uncertainty the uncertainties are decision-dependent and resolve gradually depending on the decisions made. In this paper, we address a generic non-convex MINLP model for such planning problems where the uncertain parameters are assumed to follow discrete distributions and the decisions are made on a discrete time horizon. In order to account for the decision-dependent uncertainties and gradual uncertainty resolution, we propose a multistage stochastic programming model in which the non-anticipativity constraints in the model are not prespecified but change as a function of the decisions made. Furthermore, planning problems consist of several scenario subproblems where each subproblem is modeled as a nonconvex mixed-integer nonlinear program. We propose a solution strategy that combines global optimization and outer-approximation in order to optimize the planning decisions. We apply this generic problem structure and the proposed solution algorithm to several planning problems to illustrate the efficiency of the proposed method with respect to the method that uses only global optimization.  相似文献   

14.
In this work, we propose a global optimization approach for mixed-integer programming problems. To this aim, we preliminarily define an exact penalty algorithm model for globally solving general problems and we show its convergence properties. Then, we describe a particular version of the algorithm that solves mixed-integer problems and we report computational results on some MINLP problems.  相似文献   

15.
ABSTRACT

We define and discuss different enumerative methods to compute solutions of generalized Nash equilibrium problems with linear coupling constraints and mixed-integer variables. We propose both branch-and-bound methods based on merit functions for the mixed-integer game, and branch-and-prune methods that exploit the concept of dominance to make effective cuts. We show that under mild assumptions the equilibrium set of the game is finite and we define an enumerative method to compute the whole of it. We show that our branch-and-prune method can be suitably modified in order to make a general equilibrium selection over the solution set of the mixed-integer game. We define an application in economics that can be modelled as a Nash game with linear coupling constraints and mixed-integer variables, and we adapt the branch-and-prune method to efficiently solve it.  相似文献   

16.
We design a network that supports a feasible multicommodity flow even after the failures of any k edges. We present a mixed-integer linear program (MILP), a cutting plane algorithm, and a column-and-cut algorithm. The algorithms add constraints to repair vulnerabilities in partial network designs. Empirical studies on previously unsolved instances of SNDlib demonstrate their effectiveness.  相似文献   

17.
针对混合整数非线性约束优化问题(MINLP)的一般形式,通过罚函数的方法,给出了它的几种等价形式,并证明了最优解的等价性.将约束优化问题转化成更容易求解的无约束非线性优化问题,并把混合整数规划转化成非整数优化问题,从而将MINLP的求解简化为求解一个连续的无约束非线性优化问题,进而可用已有的一般无约束优化算法进行求解.  相似文献   

18.
This paper deals with the branch and bound solution of process synthesis problems that are modelled as mixed-integer linear programming (MILP) problems. The symbolic integration of logic relations between potential units in a process network is proposed in the LP based branch and bound method to expedite the search for the optimal solution. The objective of this integration is to reduce the number of nodes that must be enumerated by using the logic to decide on the branching of variables and to determine by symbolic inference whether additional variables can be fixed at each node. The important feature of this approach is that it does not require additional constraints in the MILP and the logic can be systematically generated for process networks. Strategies for performing the integration are proposed that use the disjunctive and conjunctive normal form representations of the logic, respectively. Computational results will be presented to illustrate that substantial savings can be achieved.  相似文献   

19.
This paper addresses the solution of a cardinality Boolean quadratic programming problem using three different approaches. The first transforms the original problem into six mixed-integer linear programming (MILP) formulations. The second approach takes one of the MILP formulations and relies on the specific features of an MILP solver, namely using starting incumbents, polishing, and callbacks. The last involves the direct solution of the original problem by solvers that can accomodate the nonlinear combinatorial problem. Particular emphasis is placed on the definition of the MILP reformulations and their comparison with the other approaches. The results indicate that the data of the problem has a strong influence on the performance of the different approaches, and that there are clear-cut approaches that are better for some instances of the data. A detailed analysis of the results is made to identify the most effective approaches for specific instances of the data.  相似文献   

20.
We address a generic mixed-integer bilevel linear program (MIBLP), i.e., a bilevel optimization problem where all objective functions and constraints are linear, and some/all variables are required to take integer values. We first propose necessary modifications needed to turn a standard branch-and-bound MILP solver into an exact and finitely-convergent MIBLP solver, also addressing MIBLP unboundedness and infeasibility. As in other approaches from the literature, our scheme is finitely-convergent in case both the leader and the follower problems are pure integer. In addition, it is capable of dealing with continuous variables both in the leader and in follower problems—provided that the leader variables influencing follower’s decisions are integer and bounded. We then introduce new classes of linear inequalities to be embedded in this branch-and-bound framework, some of which are intersection cuts based on feasible-free convex sets. We present a computational study on various classes of benchmark instances available from the literature, in which we demonstrate that our approach outperforms alternative state-of-the-art MIBLP methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号