首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of continuous logic, this paper axiomatizes both the class \(\mathcal {C}\) of lattice-ordered groups isomorphic to C(X) for X compact and the subclass \(\mathcal {C}^+\) of structures existentially closed in \(\mathcal {C}\); shows that the theory of \(\mathcal {C}^+\) is \(\aleph _0\)-categorical and admits elimination of quantifiers; establishes a Nullstellensatz for \(\mathcal {C}\) and \(\mathcal {C}^+\); shows that \(C(X)\in \mathcal {C}\) has a prime-model extension in \(\mathcal {C}^+\) just in case X is Boolean; and proves that in a sense relevant to continuous logic, positive formulas admit in \(\mathcal {C}^+\) elimination of quantifiers to positive formulas.  相似文献   

2.
Friedrich Wehrung 《Order》2018,35(1):111-132
A partial lattice P is ideal-projective, with respect to a class \(\mathcal {C}\) of lattices, if for every \(K\in \mathcal {C}\) and every homomorphism φ of partial lattices from P to the ideal lattice of K, there are arbitrarily large choice functions f:PK for φ that are also homomorphisms of partial lattices. This extends the traditional concept of (sharp) transferability of a lattice with respect to \(\mathcal {C}\). We prove the following: (1) A finite lattice P, belonging to a variety \(\mathcal {V}\), is sharply transferable with respect to \(\mathcal {V}\) iff it is projective with respect to \(\mathcal {V}\) and weakly distributive lattice homomorphisms, iff it is ideal-projective with respect to \(\mathcal {V}\), (2) Every finite distributive lattice is sharply transferable with respect to the class \(\mathcal {R}_{\text {mod}}\) of all relatively complemented modular lattices, (3) The gluing D 4 of two squares, the top of one being identified with the bottom of the other one, is sharply transferable with respect to a variety \(\mathcal {V}\) iff \(\mathcal {V}\) is contained in the variety \(\mathcal {M}_{\omega }\) generated by all lattices of length 2, (4) D 4 is projective, but not ideal-projective, with respect to \(\mathcal {R}_{\text {mod}}\) , (5) D 4 is transferable, but not sharply transferable, with respect to the variety \(\mathcal {M}\) of all modular lattices. This solves a 1978 problem of G. Grätzer, (6) We construct a modular lattice whose canonical embedding into its ideal lattice is not pure. This solves a 1974 problem of E. Nelson.  相似文献   

3.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

4.
Here we show that every normal band N can be embedded into the normal band \(\mathcal {B(S)}\) of all k-bi-ideals, the left part \(N/ \mathcal {R}\) of N into the left normal band \(\mathcal {R(S)}\) of all right k-ideals, the right part \(N/ \mathcal {L}\) of N into the right normal band \(\mathcal {L(S)}\) of all left k-ideals, and the greatest semilattice homomorphic image \(N/ \mathcal {J}\) of N into the semilattice of all k-ideals of a same k-regular and intra k-regular semiring S.  相似文献   

5.
Each saturated (resp., Arf) numerical semigroup S has the property that each of its fractions \(\frac{S}{k}\) is saturated (resp., Arf), but the property of being of maximal embedding dimension (MED) is not stable under formation of fractions. If S is a numerical semigroup, then S is MED (resp., Arf; resp., saturated) if and only if, for each 2≤k∈?, \(S = \frac{T}{k}\) for infinitely many MED (resp., Arf; resp., saturated) numerical semigroups T. Let \(\mathcal{A}\) (resp., \(\mathcal{F}\)) be the class of Arf numerical semigroups (resp., of numerical semigroups each of whose fractions is of maximal embedding dimension). Then there exists an infinite strictly ascending chain \(\mathcal{A} =\mathcal{C}_{1} \subset\mathcal{C}_{2} \subset\mathcal{C}_{3}\subset \,\cdots\, \subset\mathcal{F}\), where, like \(\mathcal{A}\) and \(\mathcal{F}\), each \(\mathcal{C}_{n}\) is stable under the formation of fractions.  相似文献   

6.
Let k be a commutative ring, \(\mathcal {A}\) and \(\mathcal {B}\) – two k-linear categories with an action of a group G. We introduce the notion of a standard G-equivalence from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\), where \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) is the homotopy category of finitely generated projective \(\mathcal {A}\)-complexes. We construct a map from the set of standard G-equivalences to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) and a map from the set of standard G-equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {B}\) to \(\mathcal {K}_{p}^{\mathrm {b}}\mathcal {A}\) to the set of standard equivalences from \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {B}/G)\) to \(\mathcal {K}_{p}^{\mathrm {b}}(\mathcal {A}/G)\), where \(\mathcal {A}/G\) denotes the orbit category. We investigate the properties of these maps and apply our results to the case where \(\mathcal {A}=\mathcal {B}=R\) is a Frobenius k-algebra and G is the cyclic group generated by its Nakayama automorphism ν. We apply this technique to obtain the generating set of the derived Picard group of a Frobenius Nakayama algebra over an algebraically closed field.  相似文献   

7.
Let \(\mathcal{U}\) be the class of all unipotent monoids and \(\mathcal{B}\) the variety of all bands. We characterize the Malcev product \(\mathcal{U} \circ \mathcal{V}\) where \(\mathcal{V}\) is a subvariety of \(\mathcal{B}\) low in its lattice of subvarieties, \(\mathcal{B}\) itself and the subquasivariety \(\mathcal{S} \circ \mathcal{RB}\), where \(\mathcal{S}\) stands for semilattices and \(\mathcal{RB}\) for rectangular bands, in several ways including by a set of axioms. For members of some of them we describe the structure as well. This succeeds by using the relation \(\widetilde{\mathcal{H}}= \widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}\), where \(a\;\,\widetilde{\mathcal{L}}\;\,b\) if and only if a and b have the same idempotent right identities, and \(\widetilde{\mathcal{R}}\) is its dual.We also consider \((\mathcal{U} \circ \mathcal{RB}) \circ \mathcal{S}\) which provides the motivation for this study since \((\mathcal{G} \circ \mathcal{RB}) \circ \mathcal{S}\) coincides with completely regular semigroups, where \(\mathcal{G}\) is the variety of all groups. All this amounts to a generalization of the latter: \(\mathcal{U}\) instead of \(\mathcal{G}\).  相似文献   

8.
Let \(\mathcal{A} = \mathbb{F}[x,y]\) be the polynomial algebra on two variables x, y over an algebraically closed field \(\mathbb{F}\) of characteristic zero. Under the Poisson bracket, \(\mathcal{A}\) is equipped with a natural Lie algebra structure. It is proven that the maximal good subspace of \(\mathcal{A}*\) induced from the multiplication of the associative commutative algebra \(\mathcal{A}\) coincides with the maximal good subspace of \(\mathcal{A}*\) induced from the Poisson bracket of the Poisson Lie algebra \(\mathcal{A}\). Based on this, structures of dual Lie bialgebras of the Poisson type are investigated. As by-products, five classes of new infinite-dimensional Lie algebras are obtained.  相似文献   

9.
In the category of the title, called W, we completely describe the monoreflections \(\mathcal {R}\) which are H-closed (closed under homomorphic image) by means of epimorphic extensions S of the free object on ω generators, F(ω), within the Baire functions on \(\mathbb {R}^{\omega }\), \(B(\mathbb {R}^{\omega })\); label the inclusion \(e_{S} : F(\omega ) \rightarrow S\). Then (a) inj e S (the class of objects injective for e S ) is such an \(\mathcal {R}\), with e S a reflection map iff S is closed under countable composition with itself (called ccc), (b) each such \(\mathcal {R}\) is inj e S for a unique S with ccc, and (c) if S has ccc, then A∈inj e S iff A is closed under countable composition with S. We think of (c) as expressing: A is closed under the implicit operations of W represented by S (and these are of at most countable arity). In particular, the family of H-closed monoreflections is a set, whereas the family of all monoreflections is consistently a proper class. There is a categorical framework to the proofs, valid in any sufficiently complete category with free objects and epicomplete monoreflection β which is H-closed and of bounded arity; in W the β is of countable arity, and \(\beta F(\omega ) = B(\mathbb {R}^{\omega })\). The paper continues our earlier work along similar lines.  相似文献   

10.
The Walsh transform \(\widehat{Q}\) of a quadratic function \(Q:{\mathbb F}_{p^n}\rightarrow {\mathbb F}_p\) satisfies \(|\widehat{Q}(b)| \in \{0,p^{\frac{n+s}{2}}\}\) for all \(b\in {\mathbb F}_{p^n}\), where \(0\le s\le n-1\) is an integer depending on Q. In this article, we study the following three classes of quadratic functions of wide interest. The class \(\mathcal {C}_1\) is defined for arbitrary n as \(\mathcal {C}_1 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{\lfloor (n-1)/2\rfloor }a_ix^{2^i+1})\;:\; a_i \in {\mathbb F}_2\}\), and the larger class \(\mathcal {C}_2\) is defined for even n as \(\mathcal {C}_2 = \{Q(x) = \mathrm{Tr_n}(\sum _{i=1}^{(n/2)-1}a_ix^{2^i+1}) + \mathrm{Tr_{n/2}}(a_{n/2}x^{2^{n/2}+1}) \;:\; a_i \in {\mathbb F}_2\}\). For an odd prime p, the subclass \(\mathcal {D}\) of all p-ary quadratic functions is defined as \(\mathcal {D} = \{Q(x) = \mathrm{Tr_n}(\sum _{i=0}^{\lfloor n/2\rfloor }a_ix^{p^i+1})\;:\; a_i \in {\mathbb F}_p\}\). We determine the generating function for the distribution of the parameter s for \(\mathcal {C}_1, \mathcal {C}_2\) and \(\mathcal {D}\). As a consequence we completely describe the distribution of the nonlinearity for the rotation symmetric quadratic Boolean functions, and in the case \(p > 2\), the distribution of the co-dimension for the rotation symmetric quadratic p-ary functions, which have been attracting considerable attention recently. Our results also facilitate obtaining closed formulas for the number of such quadratic functions with prescribed s for small values of s, and hence extend earlier results on this topic. We also present the complete weight distribution of the subcodes of the second order Reed–Muller codes corresponding to \(\mathcal {C}_1\) and \(\mathcal {C}_2\) in terms of a generating function.  相似文献   

11.
Let \(\mathcal{H}\) be an infinite dimensional complex Hilbert space and \(\mathcal{A}\) be a standard operator algebra on \(\mathcal{H}\) which is closed under the adjoint operation. It is shown that each nonlinear *-Lie-type derivation δ on \(\mathcal{A}\) is a linear *-derivation. Moreover, δ is an inner *-derivation as well.  相似文献   

12.
Let A be a von Neumann algebra with no central abelian projections. It is proved that if an additive map δ :A → A satisfies δ([[a, b], c]) = [[δ(a), b], c] + [[a, δ(b)], c] +[[a, b], δ(c)] for any a, b, c∈ A with ab = 0(resp. ab = P, where P is a fixed nontrivial projection in A), then there exist an additive derivation d from A into itself and an additive map f :A → ZA vanishing at every second commutator [[a, b], c] with ab = 0(resp.ab = P) such that δ(a) = d(a) + f(a) for any a∈ A.  相似文献   

13.
Let \(n \ge r \ge s \ge 0\) be integers and \(\mathcal {F}\) a family of r-subsets of [n]. Let \(W_{r,s}^{\mathcal {F}}\) be the higher inclusion matrix of the subsets in \({{\mathcal {F}}}\) vs. the s-subsets of [n]. When \(\mathcal {F}\) consists of all r-subsets of [n], we shall simply write \(W_{r,s}\) in place of \(W_{r,s}^{\mathcal {F}}\). In this paper we prove that the rank of the higher inclusion matrix \(W_{r,s}\) over an arbitrary field K is resilient. That is, if the size of \(\mathcal {F}\) is “close” to \({n \atopwithdelims ()r}\) then \({{\mathrm{rank}}}_{K}( W_{r,s}^{\mathcal {F}}) = {{\mathrm{rank}}}_{K}(W_{r,s})\), where K is an arbitrary field. Furthermore, we prove that the rank (over a field K) of the higher inclusion matrix of r-subspaces vs. s-subspaces of an n-dimensional vector space over \({\mathbb {F}}_q\) is also resilient if \(\mathrm{char}(K)\) is coprime to q.  相似文献   

14.
Recently, physicists are interested in 6-dimensional physics including the massless field operators on Lorentzian space \(\mathbb R^{5,1}\). The elliptic version \(\mathcal {D}_{k}\) of these operators coincides with the higher spin massless field operators on \(\mathbb R^{6}\) introduced by Sou?ek earlier. The embedding of \(\mathbb R^{6}\) into the space of complex antisymmetric matrices allows us to use two-component notation, generating the Penrose two-spinor notation for dimension 4, which makes the spinor calculus on \(\mathbb R^6\) more concrete and explicit. A function annihilated by \(\mathcal {D}_{k}\) is called k-monogenic. Applying the Penrose integral formula, which can be checked by direct differentiation, we give infinite number of such k-monogenic polynomials for fixed k. So the function theory of k-monogenic functions is abundant and interesting.  相似文献   

15.
If S is a semigroup, the global (or the power semigroup) of S is the set \(\mathcal {P}(S)\) of all nonempty subsets of S equipped with the naturally defined multiplication. A class \(\mathcal {K}\) of semigroups is globally determined if any two semigroups of \({\mathcal {K}}\) with isomorphic globals are themselves isomorphic. We study properties of globals of normal orthogroups and show, in particular, that the class of normal orthogroups is globally determined.  相似文献   

16.
Let \(\mathcal {A}\) be a Hom-finite additive Krull-Schmidt k-category where k is an algebraically closed field. Let \(\text {mod}\mathcal {A}\) denote the category of locally finite dimensional \(\mathcal {A}\)-modules, that is, the category of covariant functors \(\mathcal {A} \to \text {mod}k\). We prove that an irreducible monomorphism in \(\text {mod}\mathcal {A}\) has a finitely generated cokernel, and that an irreducible epimorphism in \(\text {mod}\mathcal {A}\) has a finitely co-generated kernel. Using this, we get that an almost split sequence in \(\text {mod}\mathcal {A}\) has to start with a finitely co-presented module and end with a finitely presented one. Finally, we apply our results to the study of rep(Q), the category of locally finite dimensional representations of a strongly locally finite quiver. We describe all possible shapes of the Auslander-Reiten quiver of rep(Q).  相似文献   

17.
We study packing problems with matroid structures, which includes the strength of a graph of Cunningham and scheduling problems. If \(\mathcal {M}\) is a matroid over a set of elements S with independent set \(\mathcal {I}\), and \(m=|S|\), we suppose that we are given an oracle function that takes an independent set \(A\in \mathcal {I}\) and an element \(e\in S\) and determines if \(A\cup \{e\}\) is independent in time I(m). Also, given that the elements of A are represented in an ordered way \(A=\{A_1,\dots ,A_k\}\), we denote the time to check if \(A\cup \{e\}\notin \mathcal {I}\) and if so, to find the minimum \(i\in \{0,\dots ,k\}\) such that \(\{A_1,\dots ,A_i\}\cup \{e\}\notin \mathcal {I}\) by \(I^*(m)\). Then, we describe a new FPTAS that computes for any \(\varepsilon >0\) and for any matroid \(\mathcal {M}\) of rank r over a set S of m elements, in memory space O(m), the packing \(\varLambda ({\mathcal {M}})\) within \(1+\varepsilon \) in time \(O(mI^*(m)\log (m)\log (m/r)/\varepsilon ^2)\), and the covering \(\varUpsilon ({\mathcal {M}})\) in time \(O(r\varUpsilon ({\mathcal {M}})I(m)\log (m)\log (m/r)/\varepsilon ^2)\). This method outperforms in time complexity by a factor of \(\varOmega (m/r)\) the FPTAS of Plotkin, Shmoys, and Tardos, and a factor of \(\varOmega (m)\) the FPTAS of Garg and Konemann. On top of the value of the packing and the covering, our algorithm exhibits a combinatorial object that proves the approximation. The applications of this result include graph partitioning, minimum cuts, VLSI computing, job scheduling and others.  相似文献   

18.
Let \(\mathcal {O}_{n}\) denote the Cuntz algebra for n ≥ 2. We introduce an embedding f of \(\mathcal {O}_{m}\) into \(\mathcal {O}_{n}\) arising from a geometric progression of Cuntz generaters of \(\mathcal {O}_{n}\). By identifying \(\mathcal {O}_{m}\) with \(f(\mathcal {O}_{m})\), we extend Cuntz states on \(\mathcal {O}_{m}\) to \(\mathcal {O}_{n}\). We show (i) a necessary and sufficient condition of the uniqueness of the extension, (ii) the complete classification of all such extensions up to unitary equivalence of their GNS representations, and (iii) the decomposition formula of a mixing state into a convex hull of pure states. The complete set of invariants of all GNS representations by such pure states is given as a certain set of complex unit vectors.  相似文献   

19.
Let Q0 be the classical generalized quadrangle of order q = 2n(n≥2) arising from a non-degenerate quadratic form in a 5-dimensional vector space defined over a finite field of order q. We consider the rank two geometry \(\mathcal {X}\) having as points all the elliptic ovoids of Q0 and as lines the maximal pencils of elliptic ovoids of Q0 pairwise tangent at the same point. We first prove that \(\mathcal {X}\) is isomorphic to a 2-fold quotient of the affine generalized quadrangle Q?Q0, where Q is the classical (q,q2)-generalized quadrangle admitting Q0 as a hyperplane. Further, we classify the cliques in the collinearity graph Γ of \(\mathcal {X}\). We prove that any maximal clique in Γ is either a line of \(\mathcal {X}\) or it consists of 6 or 4 points of \(\mathcal {X}\) not contained in any line of \(\mathcal {X}\), accordingly as n is odd or even. We count the number of cliques of each type and show that those cliques which are not contained in lines of \(\mathcal {X}\) arise as subgeometries of Q defined over \(\mathbb {F}_{2}\).  相似文献   

20.
We define NLC\(_k^{\mathcal{F}}\) to be the restriction of the class of graphs NLC k , where relabelling functions are exclusively taken from a set \(\mathcal{F}\) of functions from {1,...,k} into {1,...,k}. We characterize the sets of functions \(\mathcal{F}\) for which NLC\(_k^{\mathcal{F}}\) is well-quasi-ordered by the induced subgraph relation ≤? i . Precisely, these sets \(\mathcal{F}\) are those which satisfy that for every \(f,g\in \mathcal{F}\), we have Im(f?°?g)?=?Im(f) or Im(g?°?f)?=?Im(g). To obtain this, we show that words (or trees) on \(\mathcal{F}\) are well-quasi-ordered by a relation slightly more constrained than the usual subword (or subtree) relation. A class of graphs is n-well-quasi-ordered if the collection of its vertex-labellings into n colors forms a well-quasi-order under ≤? i , where ≤? i respects labels. Pouzet (C R Acad Sci, Paris Sér A–B 274:1677–1680, 1972) conjectured that a 2-well-quasi-ordered class closed under induced subgraph is in fact n-well-quasi-ordered for every n. A possible approach would be to characterize the 2-well-quasi-ordered classes of graphs. In this respect, we conjecture that such a class is always included in some well-quasi-ordered NLC\(_k^{\mathcal{F}}\) for some family \(\mathcal{F}\). This would imply Pouzet’s conjecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号