首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The singular boundary-value problem
$ \left\{ {\begin{array}{*{20}{c}} {{u^{\prime\prime}} + g\left( {t,u,{u^{\prime}}} \right) = 0\quad {\text{for}}\quad t \in \left( {0,1} \right),} \hfill \\ {u(0) = u(1) = 0} \hfill \\ \end{array} } \right. $
is studied. The singularity may appear at u?=?0, and the function g may change sign. An existence theorem for solutions to the above boundary-value problem is proposed, and it is proved via the method of upper and lower solutions.
  相似文献   

2.
We study the positive solution \({u(r,\rho)}\) of the quasilinear elliptic equation
$$\begin{cases}r^{-(\gamma-1)}(r^{\alpha}|u^{\prime}|^{\beta-1}u^{\prime})^{\prime}+|u|^{p-1}u=0, & 0 < r < \infty,\\ u(0) = \rho > 0,\ u^{\prime}(0)=0.\end{cases}$$
This class of differential operators includes the usual Laplace, m-Laplace, and k-Hessian operators in the space of radial functions. The equation has a singular positive solution u *(r) under certain conditions on \({\alpha}\), \({\beta}\), \({\gamma}\), and p. A generalized Joseph–Lundgren exponent, which we denote by \({p^*_{JL}}\), is obtained. We study the intersection numbers between \({u(r,\rho)}\) and u *(r) and between \({u(r,\rho_0)}\) and \({u(r,\rho_1)}\), and see that \({p^*_{JL}}\) plays an important role. We also determine the bifurcation diagram of the problem
$$\begin{cases}r^{-(\gamma-1)}(r^{\alpha}|u^{\prime}|^{\beta-1}u^{\prime})^{\prime} + \lambda(u+1)^p=0, & 0 < r < 1,\\ u(r) > 0, & 0 \le r < 1,\\ u^{\prime}(0)=0,\ u(1)=0.\end{cases}$$
The main technique used in the proofs is a phase plane analysis.
  相似文献   

3.
This paper is concerned with the existence of positive homoclinic solutions for the second-order differential equation
$$\begin{aligned} u^{\prime \prime }+cu^{\prime }-a(t)u+f(t,u)=0, \end{aligned}$$
where \(c\ge 0\) is a constant and the functions a and f are continuous and not necessarily periodic in t. Under other suitable assumptions on a and f, we obtain the existence of positive homoclinic solutions in both cases sub-quadratic and super-quadratic by using critical point theorems.
  相似文献   

4.
We mainly discuss entire solutions with finite order of the following Fermat type differential-difference equations
$$\begin{array}{ll}(f)^{n}+f(z+c)^{m}=1;\\f^{\prime}(z)^{n}+f(z+c)^{m}=1;\\ f^{\prime}(z)^{n}+[f(z+c)-f(z)]^{m}=1,\end{array}$$
where m, n are positive integers.
  相似文献   

5.
In this paper, we study the existence of positive solutions to the following Schr¨odinger system:{-?u + V_1(x)u = μ_1(x)u~3+ β(x)v~2u, x ∈R~N,-?v + V_2(x)v = μ_2(x)v~3+ β(x)u~2v, x ∈R~N,u, v ∈H~1(R~N),where N = 1, 2, 3; V_1(x) and V_2(x) are positive and continuous, but may not be well-shaped; and μ_1(x), μ_2(x)and β(x) are continuous, but may not be positive or anti-well-shaped. We prove that the system has a positive solution when the coefficients Vi(x), μ_i(x)(i = 1, 2) and β(x) satisfy some additional conditions.  相似文献   

6.
In this paper, we deal with the following nonlinear fractional differential problem in the half-line \({\mathbb{R}^{+}=(0,+ \infty)}\)
$$\left\{\begin{array}{l}D^{\alpha }u(x)+f(x,u(x),D^{p}u(x))=0,\quad x \in \mathbb{R}^{+},\\ u(0)=u^{\prime } \left( 0\right) = \cdots =u^{\left( m-2\right) }(0)=0,\end{array}\right.$$
where \({m\in \mathbb{N}, m \geq 2, m-1 < \alpha \leq m, 0 < p \leq \alpha -1}\), the differential operator is taken in the Riemann–Liouville sense and f is a Borel measurable function in \({\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R} ^{+}}\) satisfying certain conditions. More precisely, we show the existence of multiple unbounded positive solutions, by means of Schäuder fixed point theorem. Some examples illustrating our main result are also given.
  相似文献   

7.
Consider the following prescribed scalar curvature problem involving the fractional Laplacian with critical exponent:
$$\begin{aligned} \left\{ \begin{array}{ll}(-\Delta )^{\sigma }u=K(y)u^{\frac{N+2\sigma }{N-2\sigma }} \text { in }~ {\mathbb {R}}^{N},\\ ~u>0, \quad y\in {\mathbb {R}}^{N}.\end{array}\right. \end{aligned}$$
(0.1)
For \(N\ge 4\) and \(\sigma \in (\frac{1}{2}, 1),\) we prove a local uniqueness result for bubbling solutions of (0.1). Such a result implies that some bubbling solutions preserve the symmetry from the scalar curvature K(y).
  相似文献   

8.
Abdulkadir Dogan 《Positivity》2018,22(5):1387-1402
This paper deals with the existence of positive solutions of nonlinear differential equation
$$\begin{aligned} u^{\prime \prime }(t)+ a(t) f(u(t) )=0,\quad 0<t <1, \end{aligned}$$
subject to the boundary conditions
$$\begin{aligned} u(0)=\sum _{i=1}^{m-2} a_i u (\xi _i) ,\quad u^{\prime } (1) = \sum _{i=1}^{m-2} b_i u^{\prime } (\xi _i), \end{aligned}$$
where \( \xi _i \in (0,1) \) with \( 0< \xi _1<\xi _2< \cdots<\xi _{m-2} < 1,\) and \(a_i,b_i \) satisfy   \(a_i,b_i\in [0,\infty ),~~ 0< \sum _{i=1}^{m-2} a_i <1,\) and \( \sum _{i=1}^{m-2} b_i <1. \) By using Schauder’s fixed point theorem, we show that it has at least one positive solution if f is nonnegative and continuous. Positive solutions of the above boundary value problem satisfy the Harnack inequality
$$\begin{aligned} \displaystyle \inf _{0 \le t \le 1} u(t) \ge \gamma \Vert u\Vert _\infty . \end{aligned}$$
  相似文献   

9.
This paper concerns with the existence of solutions for the following fractional Kirchhoff problem with critical nonlinearity:
$${\left( {\int {\int {_{{\mathbb{R}^{2N}}}\frac{{{{\left| {u\left( x \right) - u\left( y \right)} \right|}^2}}}{{{{\left| {x - y} \right|}^{N + 2s}}}}dxdy} } } \right)^{\theta - 1}}{\left( { - \Delta } \right)^s}u = \lambda h\left( x \right){u^{p - 1}} + {u^{2_s^* - 1}} in {\mathbb{R}^N},$$
where (?Δ) s is the fractional Laplacian operator with 0 < s < 1, 2 s * = 2N/(N ? 2s), N > 2s, p ∈ (1, 2 s *), θ ∈ [1, 2 s */2), h is a nonnegative function and λ a real positive parameter. Using the Ekeland variational principle and the mountain pass theorem, we obtain the existence and multiplicity of solutions for the above problem for suitable parameter λ > 0. Furthermore, under some appropriate assumptions, our result can be extended to the setting of a class of nonlocal integro-differential equations. The remarkable feature of this paper is the fact that the coefficient of fractional Laplace operator could be zero at zero, which implies that the above Kirchhoff problem is degenerate. Hence our results are new even in the Laplacian case.
  相似文献   

10.
In this work, we consider the second-order discontinuous equation in the real line,
$$u^{\prime \prime}(t)-ku(t) = f( t, u(t), u^{\prime}(t)), \quad a.e.t \in \mathbb {R},$$
with \({k > 0}\) and \({f : \mathbb{R}^{3} \rightarrow \mathbb{R}}\) an \({L^{1}}\)-Carathéodory function. The existence of homoclinic solutions in presence of not necessarily ordered lower and upper solutions is proved, without periodicity assumptions or asymptotic conditions. Some applications to Duffing-like equations are presented in last section.
  相似文献   

11.
We study positive solutions of the following polyharmonic equation with Hardy weights associated to Navier boundary conditions on a half space:?????(-?)~mu(x)=u~p(x)/|x|~s,in R_+~n,u(x)=-?u(x)=…=(-?)~(m-1)u(x)=0,on ?R_+~n,(0.1)where m is any positive integer satisfying 02mn.We first prove that the positive solutions of(0.1)are super polyharmonic,i.e.,(-?)~iu0,i=0,1,...,m-1.(0.2) For α=2m,applying this important property,we establish the equivalence between (0.1) and the integral equation u(x)=c_n∫R_+~n(1/|x-y|~(n-α)-1/|x~*-y|~(n-α))u~p(y)/|y|~sdy,(0.3) where x~*=(x1,...,x_(n-1),-x_n) is the reflection of the point x about the plane R~(n-1).Then,we use the method of moving planes in integral forms to derive rotational symmetry and monotonicity for the positive solution of(0.3),in whichαcan be any real number between 0 and n.By some Pohozaev type identities in integral forms,we prove a Liouville type theorem—the non-existence of positive solutions for(0.1).  相似文献   

12.
The aim of this paper is to define a Lefschetz coincidence class for several maps. More specifically, for maps \({f_{1}, \ldots , f_{k} : X \rightarrow N}\) from a topological space X into a connected closed n-manifold (even nonorientable) N, a cohomological class
$$L(f_{1}, \ldots , f_{k}) \in H^{n(k-1)}(X; (f_{1}, \ldots , f_{k}) ^{\ast} (R \times \Gamma^{\ast}_{N} \times \ldots \times \Gamma^{\ast} _{N}))$$
is defined in such a way that \({L(f_{1}, \ldots , f_{k}) \neq 0}\) implies that the set of coincidences
$${\rm Coin}(f_{1}, \ldots , f_{k}) = \{x \in X\,|\,f_{1}(x) = \ldots = f_{k}(x)\}$$
is nonempty.
  相似文献   

13.
This paper is concerned with the following periodic Hamiltonian elliptic system
$$\left \{\begin{array}{l}-\Delta u+V(x)u=g(x,v)\, {\rm in }\,\mathbb{R}^N,\\-\Delta v+V(x)v=f(x,u)\, {\rm in }\, \mathbb{R}^N,\\ u(x)\to 0\, {\rm and}\,v(x)\to0\, {\rm as }\,|x|\to\infty,\end{array}\right.$$
where the potential V is periodic and 0 lies in a gap of the spectrum of ?Δ + V, f(x, t) and g(x, t) depend periodically on x and are superlinear but subcritical in t at infinity. By establishing a variational setting, existence of a ground state solution and multiple solution for odd f and g are obtained.
  相似文献   

14.
We prove the existence of positive ω-periodic solutions for the delayed differential equation
$$x^{\prime}(t) = a(t)g(x(t))x(t) - \lambda b(t)f(x(t - \tau (t))),$$
where λ is a positive parameter, \({a,b,\tau \in C(\mathbb{R},\mathbb{R})}\) are ω-periodic functions with \({a,b\geq 0,a,b \not \equiv 0,f,g\in C([0,\infty ),[0,\infty ))}\), g does not need to be bounded above or bounded away from 0, and g(0) = 0 is allowed.
  相似文献   

15.
In this paper, we consider the following class of singular two-point boundary value problem posed on the interval x ?? (0, 1]
$$\begin{array}{@{}rcl@{}} (g(x)y^{\prime})^{\prime}=g(x)f(x,y),\\ y^{\prime}(0)=0,\mu y(1)+\sigma y^{\prime}(1)=B. \end{array} $$
A recursive scheme is developed, and its convergence properties are studied. Further, the error estimation of the method is discussed. The proposed scheme is based on the integral equation formalism and optimal homotopy analysis method in which a recursive scheme is established without any undetermined coefficients. The original differential equation is transformed into an equivalent integral equation to remove the singularity. The integral equation is then made free of undetermined coefficients by imposing the boundary conditions on it. Finally, the integral equation without any undetermined coefficients is efficiently treated by using optimal homotopy analysis method for finding the numerical solution. The optimal control-convergence parameter involved in the components of the series solution is obtained by minimizing the squared residual error equation. The present method is applied to obtain numerical solution of singular boundary value problems arising in various physical models, and numerical results show the advantages of our method over the existing methods.  相似文献   

16.
In this paper, let α be any real number between 0 and 2, we study the Dirichlet problem for semi-linear elliptic system involving the fractional Laplacian:
$$\left \{\begin {array}{l} (-{\Delta })^{\alpha /2}u(x)=v^{q}(x),\ \ \ x\in \mathbb {R}^{n}_{+},\\ (-{\Delta })^{\alpha /2}v(x)=u^{p}(x),\ \ \ x\in \mathbb {R}^{n}_{+},\\ u(x)=v(x)=0,\ \ \ \ \ \ \ \ \ \ x\notin \mathbb {R}^{n}_{+}. \end {array}\right .\label {elliptic} $$
(1)
We will first establish the equivalence between PDE problem (1) and the corresponding integral equation (IE) system (Lemma 2). Then we use the moving planes method in integral forms to establish our main theorem, a Liouville type theorem for the integral system (Theorem 3). Then we conclude the Liouville type theorem for the above differential system involving the fractional Laplacian (Corollary 4).
  相似文献   

17.
Book reviews     
We consider the following singularly perturbed nonlocal elliptic problem
$$\begin{aligned} -\left( \varepsilon ^{2}a+\varepsilon b\displaystyle \int _{\mathbb {R}^{3}}|\nabla u|^{2}dx\right) \Delta u+V(x)u=\displaystyle \varepsilon ^{\alpha -3}(W_{\alpha }(x)*|u|^{p})|u|^{p-2}u, \quad x\in \mathbb {R}^{3}, \end{aligned}$$
where \(\varepsilon >0\) is a parameter, \(a>0,b\ge 0\) are constants, \(\alpha \in (0,3)\), \(p\in [2, 6-\alpha )\), \(W_{\alpha }(x)\) is a convolution kernel and V(x) is an external potential satisfying some conditions. By using variational methods, we establish the existence and concentration of positive ground state solutions for the above equation.
  相似文献   

18.
Huixue Lao 《Acta Appl Math》2010,110(3):1127-1136
Let L(sym j f,s) be the jth symmetric power L-function attached to a holomorphic Hecke eigencuspform f(z) for the full modular group, and \(\lambda_{\mathrm{sym}^{j}f}(n)\) denote its nth coefficient. In this paper we are able to prove that
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{3}f}(n)\bigg|^{2}dy=O\bigl(x^{2}\bigr),$
and
$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{4}f}(n)\bigg|^{2}dy=O\bigl(x^{\frac{11}{5}}\log x\bigr).$
  相似文献   

19.
Given a compact Riemannian manifold (Mg) without boundary of dimension \(m\ge 3\) and under some symmetry assumptions, we establish existence of one positive and multiple nodal solutions to the Yamabe-type equation
$$\begin{aligned} -\text {div}_{g}(a\nabla u)+bu=c|u|^{2^{*}-2}u\quad \text { on }M, \end{aligned}$$
where \(a,b,c\in \mathcal {C}^{\infty }(M), a\) and c are positive, ? div\(_{g}(a\nabla )+b\) is coercive, and \(2^{*}=\frac{2m}{m-2}\) is the critical Sobolev exponent. In particular, if \(R_{g}\) denotes the scalar curvature of (Mg), we give conditions which guarantee that the Yamabe problem
$$\begin{aligned} \Delta _{g}u+\frac{m-2}{4(m-1)}R_{g}u=\kappa u^{2^{*}-2}\quad \text { on }M \end{aligned}$$
admits a prescribed number of nodal solutions.
  相似文献   

20.
In this paper, by the Aubry–Mather theory, it is proved that there are many periodic solutions and usual or generalized quasiperiodic solutions for relativistic oscillator with anharmonic potentials models d/dt(x/(1-|x|~2~(1/2))+ |x|~(α-1)x=p(t),where p(t) ∈ C~0(R~1) is 1-periodic and α 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号