首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We prove that there is a constant c>0 depending only on M≥1 and μ≥0 such that
òyy+a |g(t)|  dt 3 exp(-c/(ad)),     ad ? (0,p],\int_y^{y+a}{ \bigl|g(t)\bigr| \, dt} \geq \exp \bigl(-c/(a\delta)\bigr), \quad a\delta \in (0,\pi],  相似文献   

2.
For a continuous function s\sigma defined on [0,1]×\mathbbT[0,1]\times\mathbb{T}, let \ops\op\sigma stand for the (n+1)×(n+1)(n+1)\times(n+1) matrix whose (j,k)(j,k)-entries are equal to \frac1 2pò02p s( \fracjn,eiq) e-i(j-k)q  dq,        j,k = 0,1,...,n . \displaystyle \frac{1} {2\pi}\int_0^{2\pi} \sigma \left( \frac{j}{n},e^{i\theta}\right) e^{-i(j-k)\theta} \,d\theta, \qquad j,k =0,1,\dots,n~. These matrices can be thought of as variable-coefficient Toeplitz matrices or as the discrete analogue of pseudodifferential operators. Under the assumption that the function s\sigma possesses a logarithm which is sufficiently smooth on [0,1]×\mathbbT[0,1]\times\mathbb{T}, we prove that the asymptotics of the determinants of \ops\op\sigma are given by det[\ops] ~ G[s](n+1)E[s]     \text as   n?¥ , \det \left[\op\sigma\right] \sim G[\sigma]^{(n+1)}E[\sigma] \quad \text{ as \ } n\to\infty~, where G[s]G[\sigma] and E[s]E[\sigma] are explicitly determined constants. This formula is a generalization of the Szegö Limit Theorem. In comparison with the classical theory of Toeplitz determinants some new features appear.  相似文献   

3.
On the iterates of Euler's function   总被引:1,自引:0,他引:1  
Asymptotic representations are given for the three sums ?nx j(n)/j(j(n))\textstyle\sum\limits \limits _{n\le x} \varphi (n)/\varphi \bigl (\varphi (n)\bigr ), ?nx j(n)/j(j(n))\textstyle\sum\limits \limits _{n\le x} \varphi (n)/\varphi \bigl (\varphi (n)\bigr ), ?nx log j(n)/j(j(n)) ;  j\textstyle\sum\limits \limits _{n\le x}\ \log \, \varphi (n)/\varphi \bigl (\varphi (n)\bigr )\ ; \ \varphi is Euler's function.  相似文献   

4.
A k-dimensional box is a Cartesian product R 1 × · · · × R k where each R i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least p(\fraca-1a){\pi(\frac{\alpha-1}{\alpha})} for some a ? \mathbbN 3 2{\alpha\in\mathbb{N}_{\geq 2}}, then box(G) ≤ α (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree D < ?\fracn(a-1)2a?{\Delta < \lfloor{\frac{n(\alpha-1)}{2\alpha}}\rfloor} for some a ? \mathbbN 3 2{\alpha \in \mathbb{N}_{\geq 2}}, then box(G) ≤ α. We also demonstrate a graph having box(G) > α but with D = n\frac(a-1)2a+ \fracn2a(a+1)+(a+2){\Delta=n\frac{(\alpha-1)}{2\alpha}+ \frac{n}{2\alpha(\alpha+1)}+(\alpha+2)}. For a proper circular arc graph G, we show that if D < ?\fracn(a-1)a?{\Delta < \lfloor{\frac{n(\alpha-1)}{\alpha}}\rfloor} for some a ? \mathbbN 3 2{\alpha\in \mathbb{N}_{\geq 2}}, then box(G) ≤ α. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) ≤ r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k ≤ 3 arcs covers the circle, then box(G) ≤ 3 and if G admits a circular arc representation in which no family of k ≤ 4 arcs covers the circle, then box(G) ≤ 2. We also show that both these bounds are tight.  相似文献   

5.
Suppose we are given a group G\mit\Gamma and a tree X on which G\mit\Gamma acts. Let d be the distance in the tree. Then we are interested in the asymptotic behavior of the numbers ad: = # {w ? vertX : w=gv, g ? G , d(v0,w)=d }a_d:= \# \{w\in {\rm {vert}}X : w=\gamma {v}, \gamma \in {\mit\Gamma} , d({v}_0,w)=d \} if d? ¥d\rightarrow \infty , where v, vo are some fixed vertices in X.¶ In this paper we consider the case where G\mit\Gamma is a finitely generated group acting freely on a tree X. The growth function ?ad xd\textstyle\sum\limits a_d x^d is a rational function [3], which we describe explicitely. From this we get estimates for the radius of convergence of the series. For the cases where G\mit\Gamma is generated by one or two elements, we look a little bit closer at the denominator of this rational function. At the end we give one concrete example.  相似文献   

6.
It is proved that if positive definite matrix functions (i.e. matrix spectral densities) S n , n=1,2,… , are convergent in the L 1-norm, ||Sn-S||L1? 0\|S_{n}-S\|_{L_{1}}\to 0, and ò02plogdetSn(eiqdq?ò02plogdetS(eiqdq\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S_{n}(e^{i\theta})\,d\theta\to\int_{0}^{2\pi}\log \mathop{\mathrm{det}}S(e^{i\theta})\,d\theta, then the corresponding (canonical) spectral factors are convergent in L 2, ||S+n-S+||L2? 0\|S^{+}_{n}-S^{+}\|_{L_{2}}\to 0. The formulated logarithmic condition is easily seen to be necessary for the latter convergence to take place.  相似文献   

7.
We study the asymptotic behavior as n→∞ of the sequence
Sn=?i=0n-1K(naBH1i)(BH2i+1-BH2i)S_{n}=\sum_{i=0}^{n-1}K\bigl(n^{\alpha}B^{H_{1}}_{i}\bigr)\bigl(B^{H_{2}}_{i+1}-B^{H_{2}}_{i}\bigr)  相似文献   

8.
Let Π n d denote the space of all spherical polynomials of degree at most n on the unit sphere $\mathbb{S}^{d}Let Π n d denote the space of all spherical polynomials of degree at most n on the unit sphere \mathbbSd\mathbb{S}^{d} of ℝ d+1, and let d(x,y) denote the geodesic distance arccos xy between x,y ? \mathbbSdx,y\in\mathbb{S}^{d} . Given a spherical cap
B(e,a)={x ? \mathbbSd:d(x,e) £ a}    (e ? \mathbbSd, a ? (0,p) is bounded awayfrom p),B(e,\alpha)=\big\{x\in\mathbb{S}^{d}:d(x,e)\leq\alpha\big\}\quad \bigl(e\in\mathbb{S}^{d},\ \alpha\in(0,\pi)\ \mbox{is bounded awayfrom}\ \pi\bigr),  相似文献   

9.
We have obtained a recurrence formula $I_{n+3} = \frac{4(n+3)}{\pi(n+4)}VI_{n+1}We have obtained a recurrence formula In+3 = \frac4(n+3)p(n+4)VIn+1I_{n+3} = \frac{4(n+3)}{\pi(n+4)}VI_{n+1} for integro-geometric moments in the case of a circle with the area V, where In = ò\nolimitsK ?Gsnd GI_n = \int \nolimits_{K \cap G}\sigma^{n}{\rm d} G, while in the case of a convex domain K with the perimeter S and area V the recurrence formula
In+3 = \frac8(n+3)V2(n+1)(n+4)p[\fracd In+1d V - \fracIn+1S \fracd Sd V ] I_{n+3} = \frac{8(n+3)V^2}{(n+1)(n+4)\pi}\Big[\frac{{\rm d} I_{n+1}}{{\rm d} V} - \frac{I_{n+1}}{S} \frac{{\rm d} S}{{\rm d} V} \Big]  相似文献   

10.
Let R(T): = ò1T|z(1+it)|2 dt - z(2)T+plogTR(T):= \int_{1}^{T}|\zeta (1+it)|^{2}\,\mathrm{d}t - \zeta (2)T+\pi\log T. We derive a precise explicit expression for R(t) which is used to derive asymptotic formulas for ò1TR(t) dt\int_{1}^{T}R(t)\,\mathrm{d}t and ò1TR2(t) dt\int_{1}^{T}R^{2}(t)\,\mathrm{d}t. These results improve on earlier upper bounds of Balasubramanian, Ramachandra and the author for the integrals in question.  相似文献   

11.
Let H be a multigraph, possibly containing loops. An H-subdivision is any simple graph obtained by replacing the edges of H with paths of arbitrary length. Let H be an arbitrary multigraph of order k, size m, n 0(H) isolated vertices and n 1(H) vertices of degree one. In Gould and Whalen (Graphs Comb. 23:165–182, 2007) it was shown that if G is a simple graph of order n containing an H-subdivision H{\mathcal{H}} and d(G) 3 \fracn+m-k+n1(H)+2n0(H)2{\delta(G) \ge \frac{n+m-k+n_1(H)+2n_0(H)}{2}}, then G contains a spanning H-subdivision with the same ground set as H{\mathcal{H}} . As a corollary to this result, the authors were able to obtain Dirac’s famed theorem on hamiltonian graphs; namely that if G is a graph of order n ≥ 3 with d(G) 3 \fracn2{\delta(G)\ge\frac{n}{2}} , then G is hamiltonian. Bondy (J. Comb. Theory Ser. B 11:80–84, 1971) extended Dirac’s theorem by showing that if G satisfied the condition d(G) 3 \fracn2{\delta(G) \ge \frac{n}{2}} then G was either pancyclic or a complete bipartite graph. In this paper, we extend the result from Gould and Whalen (Graphs Comb. 23:165–182, 2007) in a similar manner. An H-subdivision H{\mathcal{H}} in G is 1-extendible if there exists an H-subdivision H*{\mathcal{H}^{*}} with the same ground set as H{\mathcal{H}} and |H*| = |H| + 1{|\mathcal{H}^{*}| = |\mathcal{H}| + 1} . If every H-subdivision in G is 1-extendible, then G is pan-H-linked. We demonstrate that if H is sufficiently dense and G is a graph of large enough order n such that d(G) 3 \fracn+m-k+n1(H)+2n0(H)2{\delta(G) \ge \frac{n+m-k+n_1(H)+2n_0(H)}{2}} , then G is pan-H-linked. This result is sharp.  相似文献   

12.
The Heisenberg–Pauli–Weyl (HPW) uncertainty inequality on \mathbbRn{\mathbb{R}^n} says that
|| f ||2Ca,b|| |x|a f||2\fracba+b|| (-D)b/2f||2\fracaa+b.\| f \|_2 \leq C_{\alpha,\beta}\| |x|^\alpha f\|_2^\frac{\beta}{\alpha+\beta}\| (-\Delta)^{\beta/2}f\|_2^\frac{\alpha}{\alpha+\beta}.  相似文献   

13.
A generalized Hlawka's inequality says that for any n (\geqq 2) (\geqq 2) complex numbers¶ x1, x2, ..., xn,¶¶ ?i=1n|xi - ?j=1nxj| \leqq ?i=1n|xi| + (n - 2)|?j=1nxj|. \sum_{i=1}^n\Bigg|x_i - \sum_{j=1}^{n}x_j\Bigg| \leqq \sum_{i=1}^{n}|x_i| + (n - 2)\Bigg|\sum_{j=1}^{n}x_j\Bigg|. ¶¶ We generalize this inequality to the trace norm and the trace of an n x n matrix A as¶¶ ||A - Tr A ||1 \leqq ||A||1 + (n - 2)| Tr A|. ||A - {\rm Tr} A ||_1\ \leqq ||A||_1 + (n - 2)| {\rm Tr} A|. ¶¶ We consider also the related inequalities for p-norms (1 \leqq p \leqq ¥) (1 \leqq p \leqq \infty) on matrices.  相似文献   

14.
We show that for every n \geqq 4, 0 \leqq k \leqq n - 3, p ? (0, 3] n \geqq 4, 0 \leqq k \leqq n - 3, p \in (0, 3] and every origin-symmetric convex body K in \mathbbRn \mathbb{R}^n , the function ||x ||-k2 ||x ||-n+k+pK \parallel x \parallel^{-k}_{2} \parallel x \parallel^{-n+k+p}_{K} represents a positive definite distribution on \mathbbRn \mathbb{R}^n , where ||·||2 \parallel \cdot \parallel_{2} is the Euclidean norm and ||·||K \parallel \cdot \parallel_{K} is the Minkowski functional of K. We apply this fact to prove a result of Busemann-Petty type that the inequalities for the derivatives of order (n - 4) at zero of X-ray functions of two convex bodies imply the inequalities for the volume of average m-dimensional sections of these bodies for all 3 \leqq m \leqq n 3 \leqq m \leqq n . We also prove a sharp lower estimate for the maximal derivative of X-ray functions of the order (n - 4) at zero.  相似文献   

15.
A model for cleaning a graph with brushes was recently introduced. Let α = (v 1, v 2, . . . , v n ) be a permutation of the vertices of G; for each vertex v i let ${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}${N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}} and N-(vi)={j: vj vi ? E and j <  i}{N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}} ; finally let ba(G)=?i=1n max{|N+(vi)|-|N-(vi)|,0}{b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}. The Broom number is given by B(G) =  max α b α (G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most n(d+2?{d ln2})/4{n(d+2\sqrt{d \ln 2})/4} brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \fracn4(d+Q(?d)){\frac{n}{4}(d+\Theta(\sqrt{d}))}.  相似文献   

16.
In this paper we classify the centers localized at the origin of coordinates, the cyclicity of their Hopf bifurcation and their isochronicity for the polynomial differential systems in \mathbbR2{\mathbb{R}^2} of degree d that in complex notation z = x + i y can be written as
[(z)\dot] = (l+i) z + (z[`(z)])\fracd-52 (A z4+j[`(z)]1-j + B z3[`(z)]2 + C z2-j[`(z)]3+j+D[`(z)]5), \dot z = (\lambda+i) z + (z \overline{z})^{\frac{d-5}{2}} \left(A z^{4+j} \overline{z}^{1-j} + B z^3 \overline{z}^2 + C z^{2-j} \overline{z}^{3+j}+D \overline{z}^5\right),  相似文献   

17.
The reverse Wiener index of a connected graph G is defined as {
L (G) = 1/2n(n - 1)d - W(G)\Lambda (G) = {1 \over 2}n(n - 1)d - W(G)  相似文献   

18.
Let a\alpha and b\beta be bounded measurable functions on the unit circle T. The singular integral operator Sa, bS_{\alpha ,\,\beta } is defined by Sa, b f = aPf + bQf(f ? L2 (T))S_{\alpha ,\,\beta } f = \alpha Pf + \beta Qf(f \in L^2 (T)) where P is an analytic projection and Q is a co-analytic projection. In the previous paper, the norm of Sa, bS_{\alpha ,\,\beta } was calculated in general, using a,b\alpha ,\beta and a[`(b)] + H\alpha \bar {\beta } + H^\infty where HH^\infty is a Hardy space in L (T).L^\infty (T). In this paper, the essential norm ||Sa, b ||e\Vert S_{\alpha ,\,\beta } \Vert _e of Sa, bS_{\alpha ,\,\beta } is calculated in general, using a[`(b)] + H + C\alpha \bar {\beta } + H^\infty + C where C is a set of all continuous functions on T. Hence if a[`(b)]\alpha \bar {\beta } is in H + CH^\infty + C then ||Sa, b ||e = max(||a|| , ||b|| ).\Vert S_{\alpha ,\,\beta } \Vert _e = \max (\Vert \alpha \Vert _\infty , \Vert \beta \Vert _\infty ). This gives a known result when a, b\alpha , \beta are in C.  相似文献   

19.
Let h[-(p)h^-(p) be the relative class number of the p-th cyclotomic field. We show that logh-(p) = [(p+3)/4] logp - [(p)/2] log2p+ log(1-b) + O(log22 p)\log h^-(p) = {{p+3} \over {4}} \log p - {{p} \over {2}} \log 2\pi + \log (1-\beta ) + O(\log _2^2 p), where b\beta denotes a Siegel zero, if such a zero exists and p o -1 mod 4p\equiv -1\pmod {4}. Otherwise this term does not appear.  相似文献   

20.
We prove that sufficiently regular solutions to the wave equation ${\square_g\phi=0}We prove that sufficiently regular solutions to the wave equation \squaregf = 0{\square_g\phi=0} on the exterior of the Schwarzschild black hole obey the estimates |f| £ Cd v+-\frac32+d{|\phi|\leq C_\delta v_+^{-\frac{3}{2}+\delta}} and |?tf| £ Cd v+-2+d{|\partial_t\phi|\leq C_{\delta} v_+^{-2+\delta}} on a compact region of r, including inside the black hole region. This is proved with the help of a new vector field commutator that is analogous to the scaling vector field on Minkowski spacetime. This result improves the known decay rates in the region of finite r and along the event horizon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号