首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, chs(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvo?ák et al. (2013) asked whether the list star chromatic index of every subcubic graph is at most 7. In Kerdjoudj et al. (2017) we proved that it is at most 8. In this paper we consider graphs with any maximum degree, we proved that if the maximum average degree of a graph G is less than 145 (resp. 3), then chs(G)2Δ(G)+2 (resp. chs(G)2Δ(G)+3).  相似文献   

3.
A proper edge coloring is neighbor-distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The minimum number of colors needed for a neighbor-distinguishing edge coloring is the neighbor-distinguishing index, denoted by χa(G). A graph is normal if it contains no isolated edges. Let G be a normal graph, and let Δ(G) and χ(G) denote the maximum degree and the chromatic index of G, respectively. We modify the previously known techniques of edge-partitioning to prove that χa(G)2χ(G), which implies that χa(G)2Δ(G)+2. This improves the result in Wang et al. (2015), which states that χa(G)52Δ(G) for any normal graph. We also prove that χa(G)2Δ(G) when Δ(G)=2k, k is an integer with k2.  相似文献   

4.
Let G be a graph without isolated edges, and let c:E(G){1,,k} be a coloring of the edges, where adjacent edges may be colored the same. The color code of a vertex v is the ordered k-tuple (a1,a2,,ak), where ai is the number of edges incident with v that are colored i. If every two adjacent vertices of G have different color codes, such a coloring is called multi-set neighbor distinguishing. In this paper, we prove that three colors are sufficient to produce a multi-set neighbor distinguishing edge coloring for every graph without isolated edges.  相似文献   

5.
An r-dynamic k-coloring of a graph G is a proper k-coloring such that for any vertex v, there are at least min{r,degG(v)} distinct colors in NG(v). The r-dynamic chromatic numberχrd(G) of a graph G is the least k such that there exists an r-dynamic k-coloring of G. The listr-dynamic chromatic number of a graph G is denoted by chrd(G).Recently, Loeb et al. (0000) showed that the list 3-dynamic chromatic number of a planar graph is at most 10. And Cheng et al. (0000) studied the maximum average condition to have χ3d(G)4,5, or 6. On the other hand, Song et al. (2016) showed that if G is planar with girth at least 6, then χrd(G)r+5 for any r3.In this paper, we study list 3-dynamic coloring in terms of maximum average degree. We show that ch3d(G)6 if mad(G)<187, ch3d(G)7 if mad(G)<145, and ch3d(G)8 if mad(G)<3. All of the bounds are tight.  相似文献   

6.
An adjacent vertex distinguishing total k-coloring of a graph G is a proper total k-coloring of G such that any pair of adjacent vertices have different sets of colors. The minimum number k needed for such a total coloring of G is denoted by χa(G). In this paper we prove that χa(G)2Δ(G)?1 if Δ(G)4, and χa(G)?5Δ(G)+83? in general. This improves a result in Huang et al. (2012) which states that χa(G)2Δ(G) for any graph with Δ(G)3.  相似文献   

7.
8.
For integers k,r>0, a (k,r)-coloring of a graph G is a proper coloring c with at most k colors such that for any vertex v with degree d(v), there are at least min{d(v),r} different colors present at the neighborhood of v. The r-hued chromatic number of G, χr(G), is the least integer k such that a (k,r)-coloring of G exists. The listr-hued chromatic numberχL,r(G) of G is similarly defined. Thus if Δ(G)r, then χL,r(G)χr(G)r+1. We present examples to show that, for any sufficiently large integer r, there exist graphs with maximum average degree less than 3 that cannot be (r+1,r)-colored. We prove that, for any fraction q<145, there exists an integer R=R(q) such that for each rR, every graph G with maximum average degree q is list (r+1,r)-colorable. We present examples to show that for some r there exist graphs with maximum average degree less than 4 that cannot be r-hued colored with less than 3r2 colors. We prove that, for any sufficiently small real number ?>0, there exists an integer h=h(?) such that every graph G with maximum average degree 4?? satisfies χL,r(G)r+h(?). These results extend former results in Bonamy et al. (2014).  相似文献   

9.
A 2-coloring is a coloring of vertices of a graph with colors 1 and 2. Define Vi?{vV(G):c(v)=i} for i=1 and 2. We say that G is (d1,d2)-colorable if G has a 2-coloring such that Vi is an empty set or the induced subgraph G[Vi] has the maximum degree at most di for i=1 and 2. Let G be a planar graph without 4-cycles and 5-cycles. We show that the problem to determine whether G is (0,k)-colorable is NP-complete for every positive integer k. Moreover, we construct non-(1,k)-colorable planar graphs without 4-cycles and 5-cycles for every positive integer k. In contrast, we prove that G is (d1,d2)-colorable where (d1,d2)=(4,4),(3,5), and (2,9).  相似文献   

10.
The star chromatic index of a mulitigraph G, denoted χs(G), is the minimum number of colors needed to properly color the edges of G such that no path or cycle of length four is bi-colored. A multigraph G is stark-edge-colorable if χs(G)k. Dvo?ák et al. (2013) proved that every subcubic multigraph is star 7-edge-colorable, and conjectured that every subcubic multigraph should be star 6-edge-colorable. Kerdjoudj, Kostochka and Raspaud considered the list version of this problem for simple graphs and proved that every subcubic graph with maximum average degree less than 73 is star list-5-edge-colorable. It is known that a graph with maximum average degree 145 is not necessarily star 5-edge-colorable. In this paper, we prove that every subcubic multigraph with maximum average degree less than 125 is star 5-edge-colorable.  相似文献   

11.
An r-dynamic k-coloring of a graph G is a proper k-coloring such that any vertex v has at least min{r,degG(v)} distinct colors in NG(v). The r-dynamic chromatic numberχrd(G) of a graph G is the least k such that there exists an r-dynamic k-coloring of G.Loeb et al. (2018) showed that if G is a planar graph, then χ3d(G)10, and there is a planar graph G with χ3d(G)=7. Thus, finding an optimal upper bound on χ3d(G) for a planar graph G is a natural interesting problem. In this paper, we show that χ3d(G)5 if G is a planar triangulation. The upper bound is sharp.  相似文献   

12.
13.
14.
The neighbor-distinguishing total chromatic number χa(G) of a graph G is the smallest integer k such that G can be totally colored using k colors with a condition that any two adjacent vertices have different sets of colors. In this paper, we give a sufficient and necessary condition for a planar graph G with maximum degree 13 to have χa(G)=14 or χa(G)=15. Precisely, we show that if G is a planar graph of maximum degree 13, then 14χa(G)15; and χa(G)=15 if and only if G contains two adjacent 13-vertices.  相似文献   

15.
Let G=(VE) be a simple graph and for every vertex vV let L(v) be a set (list) of available colors. G is called L-colorable if there is a proper coloring φ of the vertices with φ(v)L(v) for all vV. A function f:VN is called a choice function of G and G is said to be f-list colorable if G is L-colorable for every list assignment L choice function is defined by size(f)=vVf(v) and the sum choice number χsc(G) denotes the minimum size of a choice function of G.Sum list colorings were introduced by Isaak in 2002 and got a lot of attention since then.For r3 a generalized θk1k2kr-graph is a simple graph consisting of two vertices v1 and v2 connected by r internally vertex disjoint paths of lengths k1,k2,,kr (k1k2?kr).In 2014, Carraher et al. determined the sum-paintability of all generalized θ-graphs which is an online-version of the sum choice number and consequently an upper bound for it.In this paper we obtain sharp upper bounds for the sum choice number of all generalized θ-graphs with k12 and characterize all generalized θ-graphs G which attain the trivial upper bound |V(G)|+|E(G)|.  相似文献   

16.
Yehong Shao 《Discrete Mathematics》2018,341(12):3441-3446
Let G be a graph and L(G) be its line graph. In 1969, Chartrand and Stewart proved that κ(L(G))2κ(G)?2, where κ(G) and κ(L(G)) denote the edge connectivity of G and L(G) respectively. We show a similar relationship holds for the essential edge connectivity of G and L(G), written κe(G) and κe(L(G)), respectively. In this note, it is proved that if L(G) is not a complete graph and G does not have a vertex of degree two, then κe(L(G))2κe(G)?2. An immediate corollary is that κ(L2(G))2κ(L(G))?2 for such graphs G, where the vertex connectivity of the line graph L(G) and the second iterated line graph L2(G) are written as κ(L(G)) and κ(L2(G)) respectively.  相似文献   

17.
18.
DP-coloring (also called correspondence coloring) is a generalization of list coloring recently introduced by Dvo?ák and Postle. Several known bounds for the list chromatic number of a graph G, χ?(G), also hold for the DP-chromatic number of G, χDP(G). On the other hand, there are several properties of the DP-chromatic number that show that it differs with the list chromatic number. In this note we show one such property. It is well known that χ?(Kk,t)=k+1 if and only if tkk. We show that χDP(Kk,t)=k+1 if t1+(kkk!)(log(k!)+1), and we show that χDP(Kk,t)<k+1 if t<kkk!.  相似文献   

19.
20.
We say a graph is (d,d,,d,0,,0)-colorable with a of d’s and b of 0’s if V(G) may be partitioned into b independent sets O1,O2,,Ob and a sets D1,D2,,Da whose induced graphs have maximum degree at most d. The maximum average degree, mad(G), of a graph G is the maximum average degree over all subgraphs of G. In this note, for nonnegative integers a,b, we show that if mad(G)<43a+b, then G is (11,12,,1a,01,,0b)-colorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号