首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
应用数值模拟方法对FPSO船舶运动与LNG液舱晃荡耦合问题进行了研究.这种全耦合问题的研究基于开源平台OpenFOAM开发的船舶与海洋工程水动力CFD求解器——naoe-FOAM-SJ-TU进行计算.液舱内部流场与外部流场同时求解.采用带有两个LNG液舱的FPSO船作为对象进行数值模拟,船舶放开3个自由度运动,并在90°浪向的规则波中进行模拟.液舱充水率为20%~20%,低于船外自由水面高度.这种低充水率的液舱会大大减少船舶的横摇运动,并且舱内的流体情况较为复杂.考虑了4种不同的入射波频率下船舶的运动,与实验结果进行了对比.数值模拟结果与实验结果对比吻合良好,验证了数值求解方法的可靠性.还对大波高情况下带有低充水率LNG液舱的船舶运动进行了数值模拟分析.在船舶运动与液舱晃荡全耦合情况下,观察到了液舱内流体的剧烈晃荡和舱壁的脉冲压力.  相似文献   

2.
应用数值模拟方法对FPSO船舶运动与LNG液舱晃荡耦合问题进行了研究.这种全耦合问题的研究基于开源平台OpenFOAM开发的船舶与海洋工程水动力CFD求解器——naoe-FOAM-SJ-TU进行计算.液舱内部流场与外部流场同时求解.采用带有两个LNG液舱的FPSO船作为对象进行数值模拟,船舶放开3个自由度运动,并在90°浪向的规则波中进行模拟.液舱充水率为20%~20%,低于船外自由水面高度.这种低充水率的液舱会大大减少船舶的横摇运动,并且舱内的流体情况较为复杂.考虑了4种不同的入射波频率下船舶的运动,与实验结果进行了对比.数值模拟结果与实验结果对比吻合良好,验证了数值求解方法的可靠性.还对大波高情况下带有低充水率LNG液舱的船舶运动进行了数值模拟分析.在船舶运动与液舱晃荡全耦合情况下,观察到了液舱内流体的剧烈晃荡和舱壁的脉冲压力.  相似文献   

3.
无界区域上Stokes问题的自然边界元与有限元耦合法   总被引:10,自引:4,他引:10  
余德浩 《计算数学》1992,14(3):371-378
§1.引言 对于用有限元方法求解平面有界区域上的Stokes问题,国内外已有大量工作,例如可见[2]、[9]及其所引文献.但对无界区域上的这一问题,由于区域的无界性给有限元方法带来了困难,边界元方法及边界元与有限元的耦合法便显示其优越性.本文提出用自然边界元与有限元的耦合法求解无界区域上的Stokes问题.这一耦合法早在作者以前的工作中被应用于求解调和问题、重调和问题和平面弹性问题,但将它用于求解  相似文献   

4.
由流体冲击载荷引起的流固耦合问题广泛存在于船舶与海洋工程领域.例如:在特定激励频率下载液货舱内流体的非线性运动引起对舱壁的砰击作用,进而可能影响液舱围护系统的安全性.由于此类流固耦合问题通常涉及多学科知识,且流体自由面的变化具有强非线性特征,对研究人员带来较大挑战.考虑到Lagrange类方法在处理结构和流体自由面大变形问题上的优势,基于MPS-FEM耦合方法开发了流固耦合求解器.其中,采用MPS方法来数值模拟流体场瞬态变化,FEM方法来分析结构场的变形问题.此外,该求解器采用了弱耦合的方式来实现流体场和结构场之间的数据传递.为了验证该方法在处理流固耦合问题上的可靠性,首先数值研究了溃坝泄洪流与弹性挡板之间的流固耦合标准算例,数值结果与实验标准结果能够较好地吻合.此后,采用该求解器数值研究了带刚性挡板和弹性挡板的液舱晃荡问题,对比分析了多种激励频率下两种挡板对液舱内流体运动及舱壁上冲击压力的抑制效果.  相似文献   

5.
针对流固耦合碰撞问题,建立了流体中固体与固体碰撞界面解析直接模拟方法,采用清晰界面浸入边界法模拟流体中的动边界问题,避免了传统贴体网格方法在求解流体中存在固体间碰撞问题时网格出现负体积的问题,采用基于罚函数的有限元方法对固体的运动和碰撞进行求解,以分域耦合方式实现流体域和固体域的耦合求解.通过与静止流体中球形颗粒与壁面正碰撞和斜碰撞的实验数据对比,验证了建立的数值模拟方法对流体中固体与固体碰撞数值模拟的正确性,获得了流体域流场在碰撞前后随时间的变化,同时通过该文建立的数值模拟方法也获得了固体域中固体的碰撞力和应力.未来,将把该数值模拟方法应用到流体流动环境中,如固体颗粒对管道的冲蚀、流体诱导海洋立管之间的碰撞、坠物对海底管道的撞击等.  相似文献   

6.
由流体冲击载荷引起的流固耦合问题广泛存在于船舶与海洋工程领域.例如:在特定激励频率下载液货舱内流体的非线性运动引起对舱壁的砰击作用,进而可能影响液舱围护系统的安全性.由于此类流固耦合问题通常涉及多学科知识,且流体自由面的变化具有强非线性特征,对研究人员带来较大挑战.考虑到Lagrange类方法在处理结构和流体自由面大变形问题上的优势,基于MPS-FEM耦合方法开发了流固耦合求解器.其中,采用MPS方法来数值模拟流体场瞬态变化,FEM方法来分析结构场的变形问题.此外,该求解器采用了弱耦合的方式来实现流体场和结构场之间的数据传递.为了验证该方法在处理流固耦合问题上的可靠性,首先数值研究了溃坝泄洪流与弹性挡板之间的流固耦合标准算例,数值结果与实验标准结果能够较好地吻合.此后,采用该求解器数值研究了带刚性挡板和弹性挡板的液舱晃荡问题,对比分析了多种激励频率下两种挡板对液舱内流体运动及舱壁上冲击压力的抑制效果.  相似文献   

7.
从实拍的运动模糊图像出发,建立了数学模型来估计运动模糊的方向角.经理论推导,得出了运动模糊方向角、图像尺寸和频谱图像中平行条纹方向角三者的关系,将问题转化为估计频谱平行条纹方向角.在模型求解部分,分析了常用的Radon变换法以及两种改进方法即Gabor变换法和频谱分块法的不足,并提出了基于频谱边缘检测的改进方法.数值实验部分比较了三种方法,结果表明,方法的估计精度更高,具有更广泛的应用性.  相似文献   

8.
给出了一个变形体和刚性基础之间用双边摩擦表达其接触性质的、静态热弹性问题的方程式及其近似解法.以非单调、多值性表示该摩擦定律.忽略了问题的耦合效应,则问题的传热部分与弹性部分各自独立处理.位移矢量公式化为非凸的次静态问题,用局部Lipschitz连续函数来表示变形体的总势能.用有限单元法近似求解全部问题.  相似文献   

9.
模拟井筒是用于模拟油田井下高温高压环境的实验装置,为高温高压厚壁容器.基于热力学及大涡模拟(LES)理论,建立了模拟井筒温度场物理方程.基于热弹性力学理论,建立了热应力物理方程.采用投影法求解温度场控制方程,采用梯形法数值积分求解热应力控制方程,给出了控制方程的离散格式.通过虚拟密度法对流固耦合传热进行求解,根据应力叠加原理对模拟井筒热应力和压应力及其耦合作用进行了数值求解分析.研究结果表明:设计壁厚最小值为0.18 m的模拟井筒,强度能够满足在400℃加热环境、内部加压220 MPa工作参数下进行高温高压实验.通过实验验证了所建立的数学模型与数值求解方法的正确性,为高温高压厚壁容器设计提供了理论依据.  相似文献   

10.
以椭圆外区域上Helmholtz方程为例,研究一种带有椭圆人工边界的自然边界元与有限元耦合法,给出了耦合变分问题的适定性及误差分析并给出数值例子.理论分析及数值结果表明,用方法求解椭圆外问题是十分有效的.为求解具有长条型内边界外Helmholtz问题提供了一种很好的数值方法.  相似文献   

11.
The physical system under consideration consists of two fluids in uniform horizontal laminar motion parallel to their interface. All external restoring forces are absent. We find that nevertheless, three-wave interaction between different harmonics of the motion can take place. Attention is focused on the situation when this resonance is among the lowest three harmonics. Using the method of strained coordinates, a system of three coupled nonlinear partial differential equations is derived. These model the propagation of the interface, correct to second order. Solutions are found whose stability is briefly considered.  相似文献   

12.
In this paper, we introduce a diffuse interface model for describing the dynamics of mixtures involving multiple (two or more) phases. The coupled hydrodynamical system is derived through an energetic variational approach. The total energy of the system includes the kinetic energy and the mixing (interfacial) energies. The least action principle (or the principle of virtual work) is applied to derive the conservative part of the dynamics, with a focus on the reversible part of the stress tensor arising from the mixing energies. The dissipative part of the dynamics is then introduced through a dissipation function in the energy law, in line with Onsager's principle of maximum dissipation. The final system, formed by a set of coupled time-dependent partial differential equations, reflects a balance among various conservative and dissipative forces and governs the evolution of velocity and phase fields. To demonstrate the applicability of the proposed model, a few two-dimensional simulations have been carried out, including (1) the force balance at the three-phase contact line in equilibrium, (2) a rising bubble penetrating a fluid-fluid interface, and (3) a solid particle falling in a binary fluid. The effects of slip at solid surface have been examined in connection with contact line motion and a pinch-off phenomenon.  相似文献   

13.
An approach for combining Arbitrary–Lagrangian–Eulerian (ALE) moving-mesh and level-set interface tracking methods is presented that allows the two methods to be used in different spatial regions and coupled across the region boundaries. The coupling allows interface shapes to be convected from the ALE method to the level-set method and vice-versa across the ALE/level-set boundary. The motivation for this is to allow high-order ALE methods to represent interface motion in regions where there is no topology change, and the level-set function to be used in regions where topology change occurs. The coupling method is based on the characteristic directions of information propagation and can be implemented in any geometrical configuration. In addition, an iterative method for the hybrid formulation has been developed that can be combined with pre-existing solution methods. Tests of a propagating interface in a uniform flow show that the hybrid approach provides accuracy equivalent to what one is able to obtain with either of the methods individually.  相似文献   

14.
Capillarity plays a significant role in many natural and artificial processes, but the mechanism responsible for its dynamics is not completely understood. In this study, we consider capillary flow characteristics and propose a coupled wetting meniscus model for the mechanism of spontaneous capillary action. In this model, capillary action is considered as the dynamic coupling of two interfacial forces, i.e., the wall wetting force at the contact line and the meniscus restoring force on the free interface. The wetting force promotes the motion of the contact line directed toward an equilibrium contact angle, whereas the meniscus restoring force promotes a reduction in the interface curvature, which is more consistent with a 90° contact angle. The competing interaction between these two forces is coupled together via the evolution of the interface shape. The model is then incorporated into a finite volume method for a two-fluid flow with an interface. Capillary flow experiments were performed, including vertical and horizontal flows. Phenomena analysis and data comparisons were conducted to verify the proposed model. According to the results of our study, the model can explain the capillary flow process well and it can be also used to accurately guide capillary flow calculations.  相似文献   

15.
Nadine Falkner  Holger Steeb 《PAMM》2016,16(1):439-440
We present a direct numerical simulation approach for the simulation of shallow water flow using the particle based meshfree Smoothed Particle Hydrodynamics (SPH) method. Simulations of single phase flow are done to characterize the occurring flow parameters on both macro-scale and pore-scale. More precisely, we examine initiation of motion and sediment transport as appearing at the interface between a free flow and porous flow domain under parallel flow conditions. Therefore we evaluate three theoretical models presenting analytical solutions for this coupled problem. Moreover, we discuss the influence of heterogeneities at the interface on forces on single grains by implementing and testing various microstructures into our numerical model. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The main challenges in the numerical simulation of fluid–structure interaction (FSI) problems include the solid fracture, the free surface fluid flow, and the interactions between the solid and the fluid. Aiming to improve the treatment of these issues, a new coupled scheme is developed in this paper. For the solid structure, the Numerical Manifold Method (NMM) is adopted, in which the solid is allowed to change from continuum to discontinuum. The Smoothed Particle Hydrodynamics (SPH) method, which is suitable for free interface flow problem, is used to model the motion of fluids. A contact algorithm is then developed to handle the interaction between NMM elements and SPH particles. Three numerical examples are tested to validate the coupled NMM-SPH method, including the hydrostatic pressure test, dam-break simulation and crack propagation of a gravity dam under hydraulic pressure. Numerical modeling results indicate that the coupled NMM-SPH method can not only simulate the interaction of the solid structure and the fluid as in conventional methods, but also can predict the failure of the solid structure.  相似文献   

17.
This paper deals with pressure-based finite element analysis of fluid–structure systems considering the coupled fluid and structural dynamics. The present method uses two-dimensional fluid elements and structural line elements for the numerical simulation of the problem. The equations of motion of the fluid, considered inviscid and compressible, are expressed in terms of the pressure variable alone. The solution of the coupled system is accomplished by solving the two systems separately with the interaction effects at the fluid–solid interface enforced by an iterative scheme. Non-divergent pressure and displacement are obtained simultaneously through iterations. The Galerkin weighted residual method-based FE formulation and the iterative solution procedure are explained in detail followed by some numerical examples. Numerical results are compared with the existing solutions to validate the code for sloshing with fluid–structure coupling.  相似文献   

18.
Some important problems in coupled fluid-structural dynamics which occur in safety investigations of liquid metal fast breeder reactors (LMFBR), light water reactors and nuclear reprocessing plants are discussed and a classification of solution methods is introduced. A distinction is made between the step by step solution procedure, where available computer codes in fluid and structural dynamics are coupled, and advanced simultaneous solution methods, where the coupling is carried out at the level of the fundamental equations. Results presented include the transient deformation of a two-row pin bundle surrounded by an infinite fluid field, vapour explosions in a fluid container and containment distortions due to bubble collapse in the pressure suppression system of a boiling water reactor. A recently developed simultaneous solution method is presented in detail. Here the fluid dynamics (inviscid, incompressible fluid) is described by a singularity method which reduces the three-dimensional fluid dynamics problem to a two-dimensional formulation. In this way the three-dimensional fluid dynamics as well as the structural (shell) dynamics can be described essentially by common unknowns at the fluid-structural interface. The resulting equations for the coupled fluid-structural dynamics are analogous to the equations of motion of the structural dynamics alone.  相似文献   

19.
Different methods are available for dynamic analysis of concrete dams. Among these, modal approach is highly popular due to the efficiency of the method. This becomes more significant if the response is to be calculated for several earthquake ground motion records as required in most practical cases. In this study, two different modal approaches have been considered for dynamic analysis of concrete gravity dam–reservoir systems. These are coupled modal method and decoupled modal technique. The former approach utilizes the coupled modes of the system. It is well known that calculation of these modes involves some complications due to its corresponding unsymmetrical eigenproblem. However, the response at each step can be obtained very efficiently in this method. The latter technique, relies on the decoupled modes of the system, which are easily obtained by standard eigenvalue solvers. The equation of motion is also solved with reasonable efficiency in this approach. In the latter part of this paper, analysis of a typical dam–reservoir system is performed by both methods mentioned above. These analyses are compared from accuracy and efficiency point of view.  相似文献   

20.
We consider a two-dimensional Hele–Shaw type model fordisplacement flows occurring in the primary cementing of anoil well. The fluids are visco-plastic and may get stuck inthe annulus if a critical pressure gradient is not exceeded.The model consists of solving a nonlinear elliptic variationalinequality equation for the stream function, coupled to an equationfor interface advection, or alternatively a concentration equationfor the mass fraction of each fluid. The key difficulty is toaccurately compute yielded and unyielded zones of the wellborefluids, which we accomplish by use of an augmented Lagrangianmethod to solve the stream function equation. We validate theaccuracy of our method against analytical solutions for stablesteady-state displacements. We study the convergence of theinterface to the steady state, showing that the apparent meta-stabilityis illusory. We then explore the effects of increasing eccentricity,showing that although the interface may remain stable it becomesunsteady. Initially fully mobile flows are found, but as theeccentricity increases further the narrow side fluids fail tomove in the far field. The narrow side interface can progressslowly through the static fluids by a burrowing motion, butfor still larger eccentricities even the interface becomes staticand a narrow-side mud channel forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号