首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A class of nonlinear elliptic optimal control problems with mixed control-state constraints arising, e.g., in Lavrentiev-type regularized state constrained optimal control is considered. Based on its first order necessary optimality conditions, a semismooth Newton method is proposed and its fast local convergence in function space as well as a mesh-independence principle for appropriate discretizations are proved. The paper ends by a numerical verification of the theoretical results including a study of the algorithm in the case of vanishing Lavrentiev-parameter. The latter process is realized numerically by a combination of a nested iteration concept and an extrapolation technique for the state with respect to the Lavrentiev-parameter.  相似文献   

2.
This work is concerned with a class of PDE-constrained optimization problems that are motivated by an application in radiotherapy treatment planning. Here the primary design objective is to minimize the volume where a functional of the state violates a prescribed level, but prescribing these levels in the form of pointwise state constraints leads to infeasible problems. We therefore propose an alternative approach based on \(L^1\) penalization of the violation that is also applicable when state constraints are infeasible. We establish well-posedness of the corresponding optimal control problem, derive first-order optimality conditions, discuss convergence of minimizers as the penalty parameter tends to infinity, and present a semismooth Newton method for their efficient numerical solution. The performance of this method for a model problem is illustrated and contrasted with an alternative approach based on (regularized) state constraints.  相似文献   

3.
4.
For a parametric convex programming problem in a Hilbert space with a strongly convex objective functional, a regularized Kuhn-Tucker theorem in nondifferential form is proved by the dual regularization method. The theorem states (in terms of minimizing sequences) that the solution to the convex programming problem can be approximated by minimizers of its regular Lagrangian (which means that the Lagrange multiplier for the objective functional is unity) with no assumptions made about the regularity of the optimization problem. Points approximating the solution are constructively specified. They are stable with respect to the errors in the initial data, which makes it possible to effectively use the regularized Kuhn-Tucker theorem for solving a broad class of inverse, optimization, and optimal control problems. The relation between this assertion and the differential properties of the value function (S-function) is established. The classical Kuhn-Tucker theorem in nondifferential form is contained in the above theorem as a particular case. A version of the regularized Kuhn-Tucker theorem for convex objective functionals is also considered.  相似文献   

5.
In this paper a class of semilinear elliptic optimal control problem with pointwise state and control constraints is studied. We show that sufficient second order optimality conditions for regularized problems with small regularization parameter can be obtained from a second order sufficient condition assumed for the unregularized problem. Moreover, error estimates with respect to the regularization parameter are derived.  相似文献   

6.
We present a smooth, that is, differentiable regularization of the projection formula that occurs in constrained parabolic optimal control problems. We summarize the optimality conditions in function spaces for unconstrained and control-constrained problems subject to a class of parabolic partial differential equations. The optimality conditions are then given by coupled systems of parabolic PDEs. For constrained problems, a non-smooth projection operator occurs in the optimality conditions. For this projection operator, we present in detail a regularization method based on smoothed sign, minimum and maximum functions. For all three cases, that is, (1) the unconstrained problem, (2) the constrained problem including the projection, and (3) the regularized projection, we verify that the optimality conditions can be equivalently expressed by an elliptic boundary value problem in the space-time domain. For this problem and all three cases we discuss existence and uniqueness issues. Motivated by this elliptic problem, we use a simultaneous space-time discretization for numerical tests. Here, we show how a standard finite element software environment allows to solve the problem and, thus, to verify the applicability of this approach without much implementation effort. We present numerical results for an example problem.  相似文献   

7.
This paper deals with regularized penalty-barrier methods for convex programming problems. In the spirit of an iterative proximal regularization approach, an interior-point method is constructed, in which at each step a strongly convex function has to be minimized and the prox-term can be scaled by a variable scaling factor. The convergence of the method is studied for an axiomatically given class of barrier functions. According to the results, a wide class of barrier functions (in particular, logarithmic and exponential functions) can be applied to design special algorithms. For the method with a logarithmic barrier, the rate of convergence is investigated and assumptions that ensure linear convergence are given.  相似文献   

8.
Linear and nonlinear inverse problems which are exponentially ill-posed arise in heat conduction, satellite gradiometry, potential theory and scattering theory. For these problems logarithmic source conditions have natural interpretations whereas standard Hölder-type source conditions are far too restrictive. This paper provides a systematic study of convergence rates of regularization methods under logarithmic source conditions including the case that the operator is given onlyapproximately. We also extend previous convergence results for the iteratively regularized Gauß-Newton method to operator approximations.  相似文献   

9.
We study Newton type methods for inverse problems described by nonlinear operator equations $F(u)=g$ in Banach spaces where the Newton equations $F^{\prime }(u_n;u_{n+1}-u_n) = g-F(u_n)$ are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss–Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to $0$ both for an a priori stopping rule and for a Lepski?-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback–Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performance of the proposed method for these problems is illustrated in numerical examples.  相似文献   

10.
For mixed variational inequalities in a Hilbert space, we consider continuous first-order methods and obtain sufficient conditions for their strong convergence. If the operator of the problem is not strongly monotone and the functional does not have the property of strong convexity, then regularized versions of these methods are used for the solution of a mixed variational inequality. For the case in which the data are given approximately, we prove the strong convergence of the regularized methods to a normal solution of the original problem. The construction of all methods uses the resolvent of the maximal monotone operator. We obtain sufficient conditions for the unique solvability of the Cauchy problems determining the considered methods.  相似文献   

11.
A state-constrained optimal control problem with nonlocal radiation interface conditions arising from the modeling of crystal growth processes is considered. The problem is approximated by a Moreau-Yosida type regularization. Optimality conditions for the regularized problem are derived and the convergence of the regularized problems is shown. In the last part of the paper, some numerical results are presented.  相似文献   

12.
In this paper we first establish a Lagrange multiplier condition characterizing a regularized Lagrangian duality for quadratic minimization problems with finitely many linear equality and quadratic inequality constraints, where the linear constraints are not relaxed in the regularized Lagrangian dual. In particular, in the case of a quadratic optimization problem with a single quadratic inequality constraint such as the linearly constrained trust-region problems, we show that the Slater constraint qualification (SCQ) is necessary and sufficient for the regularized Lagrangian duality in the sense that the regularized duality holds for each quadratic objective function over the constraints if and only if (SCQ) holds. A new theorem of the alternative for systems involving both equality constraints and two quadratic inequality constraints plays a key role. We also provide classes of quadratic programs, including a class of CDT-subproblems with linear equality constraints, where (SCQ) ensures regularized Lagrangian duality.  相似文献   

13.
Necessary and sufficient conditions are given for a class of optimization problems involving optimal selection of a measurable subset from a given measure space subject to set function inequality constraints. Results are developed firstly for the case where the set functions involved possess a differentiability property and secondly where a type of convexity is present. These results are then used to develop numerical methods. It is shown that in a special case the optimal set can be obtained via solution of a fixed point problem in Euclidean space.  相似文献   

14.
This paper is devoted to an optimal control problem of Maxwell??s equations in the presence of pointwise state constraints. The control is given by a divergence-free three-dimensional vector function representing an applied current density. To cope with the divergence-free constraint on the control, we consider a vector potential ansatz. Due to the lack of regularity of the control-to-state mapping, existence of Lagrange multipliers cannot be guaranteed. We regularize the optimal control problem by penalizing the pointwise state constraints. Optimality conditions for the regularized problem can be derived straightforwardly. It also turns out that the solution of the regularized problem enjoys higher regularity which then allows us to establish its convergence towards the solution of the unregularized problem. The second part of the paper focuses on the numerical analysis of the regularized optimal control problem. Here the state and the control are discretized by Nédélec??s curl-conforming edge elements. Employing the higher regularity property of the optimal control, we establish an a priori error estimate for the discretization error in the $\boldsymbol{H}(\bold{curl})$ -norm. The paper ends by numerical results including a numerical verification of our theoretical results.  相似文献   

15.
In this paper, we introduce a new class of equilibrium problems known as the multivalued regularized equilibrium problems. We use the auxiliary principle technique to suggest some iterative methods for solving multivalued regularized equilibrium problems. The convergence of the proposed methods is studied under some mild conditions. As special cases, we obtain a number of known and new results for solving various classes of regularized equilibrium problems and related optimization problems.  相似文献   

16.
We are interested in finding the coefficient of friction which leads us to a given displacement on the contact surface between an elastic solid body and a rigid foundation. The mathematical formulation of the problem is an optimal control problem governed by a quasivariational inequality. We obtain an approximative caracterization, by using two families of penalized and regularized problems, for a given optimal control.  相似文献   

17.
Ira Neitzel  Fredi Tröltzsch 《PAMM》2008,8(1):10865-10866
We consider Lavrentiev regularization for a class of semilinear parabolic optimal control problems with control constraints and pointwise state constraints and review convergence results for local solutions under Slater type assumptions as well as quadratic growth conditions. Moreover, we state a local uniqueness result for local optima under the assumptions of strict separability of the active sets as well as a second order sufficient condition for the regularized solution. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This work is a follow‐up to a series of articles by the authors where the same topic for the elliptic case is analyzed. In this article, a class of nonlocal optimal design problem driven by parabolic equations is examined. After a review of results concerning existence and uniqueness for the state equation, a detailed formulation of the nonlocal optimal design is given. The state equation is of nonlocal parabolic type, and the associated cost functional belongs to a broad class of nonlocal integrals. In the first part of the work, a general result on the existence of nonlocal optimal design is proved. The second part is devoted to analyzing the convergence of nonlocal optimal design problems toward the corresponding classical problem of optimal design. After a slight modification of the problem, either on the cost functional or by considering a new set of admissibility, the G‐convergence for the state equation and, consequently, the convergence of the nonlocal optimal design problem are proved.  相似文献   

19.
对于带有右端扰动数据的第一类紧算子方程的病态问题 ,本文应用正则化子建立了一类新的正则化求解方法 ,称之为改进的Tikonov正则化 ;通过适当选取正则参数 ,证明了正则解具有最优的渐近收敛阶 .与通常的Tikhonov正则化相比 ,这种改进的正则化可使正则解取到足够高的最优渐近阶  相似文献   

20.
Gregor Kotucha  Klaus Hackl 《PAMM》2004,4(1):336-337
The discretization of topology design problems on the basis of the finite‐element‐method results in general in large‐scale combinatorial optimization problems, which are usually relaxed by the introduction of a continuous material density function as design variable. To avoid optimal designs containing unfavourable microstructures such as the well‐known “checkerboard” patterns, the relaxed problem can be regularized by the X‐SIMP‐approach, which penalizes intermediate density values as well as high density gradients within the design domain. In this context we discuss numerical aspects of the X‐SIMP‐based regularization such as the discretization of the regularized problem, the formulation of the corresponding stiffness matrix and the numerical solution of the discretized problem. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号