首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 99 毫秒
1.
This paper discusses optimization problems with nonlinear inequality constraints and presents a new sequential quadratically-constrained quadratic programming (NSQCQP) method of feasible directions for solving such problems. At each iteration. the NSQCQP method solves only one subproblem which consists of a convex quadratic objective function, convex quadratic equality constraints, as well as a perturbation variable and yields a feasible direction of descent (improved direction). The following results on the NSQCQP are obtained: the subproblem solved at each iteration is feasible and solvable: the NSQCQP is globally convergent under the Mangasarian-Fromovitz constraint qualification (MFCQ); the improved direction can avoid the Maratos effect without the assumption of strict complementarity; the NSQCQP is superlinearly and quasiquadratically convergent under some weak assumptions without thestrict complementarity assumption and the linear independence constraint qualification (LICQ). Research supported by the National Natural Science Foundation of China Project 10261001 and Guangxi Science Foundation Projects 0236001 and 0249003. The author thanks two anonymous referees for valuable comments and suggestions on the original version of this paper.  相似文献   

2.
An efficient SQP algorithm for solving nonlinear degenerate problems is proposed in the paper. At each iteration of the algorithm, a quadratic programming subproblem, which is always feasible by introducing a slack variable, is solved to obtain a search direction. The steplength along this direction is computed by employing the 1∞ exact penalty function through Armijo-type line search scheme. The algorithm is proved to be convergent globally under mild conditions.  相似文献   

3.
This paper discusses a special class of mathematical programs with nonlinear complementarity constraints, its goal is to present a globally and superlinearly convergent algorithm for the discussed problems. We first reformulate the complementarity constraints as a standard nonlinear equality and inequality constraints by making use of a class of generalized smoothing complementarity functions, then present a new SQP algorithm for the discussed problems. At each iteration, with the help of a pivoting operation, a master search direction is yielded by solving a quadratic program, and a correction search direction for avoiding the Maratos effect is generated by an explicit formula. Under suitable assumptions, without the strict complementarity on the upper-level inequality constraints, the proposed algorithm converges globally to a B-stationary point of the problems, and its convergence rate is superlinear.AMS Subject Classification: 90C, 49MThis work was supported by the National Natural Science Foundation (10261001) and the Guangxi Province Science Foundation (0236001, 0249003) of China.  相似文献   

4.
In this paper, a new superlinearly convergent algorithm is presented for optimization problems with general nonlineer equality and inequality Constraints, Comparing with other methods for these problems, the algorithm has two main advantages. First, it doesn‘t solve anyquadratic programming (QP), and its search directions are determined by the generalized projection technique and the solutions of two systems of linear equations. Second, the sequential points generated by the algoritbh satisfy all inequity constraints and its step-length is computed by the straight line search,The algorithm is proved to possesa global and auperlinear convergence.  相似文献   

5.
This paper presents a quadratically approximate algorithm framework (QAAF) for solving general constrained optimization problems, which solves, at each iteration, a subproblem with quadratic objective function and quadratic equality together with inequality constraints. The global convergence of the algorithm framework is presented under the Mangasarian-Fromovitz constraint qualification (MFCQ), and the conditions for superlinear and quadratic convergence of the algorithm framework are given under the MFCQ, the constant rank constraint qualification (CRCQ) as well as the strong second-order sufficiency conditions (SSOSC). As an incidental result, the definition of an approximate KKT point is brought forward, and the global convergence of a sequence of approximate KKT points is analysed.  相似文献   

6.
In this paper, a class of general nonlinear programming problems with inequality and equality constraints is discussed. Firstly, the original problem is transformed into an associated simpler equivalent problem with only inequality constraints. Then, inspired by the ideals of the sequential quadratic programming (SQP) method and the method of system of linear equations (SLE), a new type of SQP algorithm for solving the original problem is proposed. At each iteration, the search direction is generated by the combination of two directions, which are obtained by solving an always feasible quadratic programming (QP) subproblem and a SLE, respectively. Moreover, in order to overcome the Maratos effect, the higher-order correction direction is obtained by solving another SLE. The two SLEs have the same coefficient matrices, and we only need to solve the one of them after a finite number of iterations. By a new line search technique, the proposed algorithm possesses global and superlinear convergence under some suitable assumptions without the strict complementarity. Finally, some comparative numerical results are reported to show that the proposed algorithm is effective and promising.  相似文献   

7.
In this paper,a new globally convergent algorithm for nonlinear optimization prablems with equality and inequality constraints is presented. The new algorithm is of SQP type which determines a search direction by solving a quadratic programming subproblem per itera-tion. Some revisions on the quadratic programming subproblem have been made in such a way that the associated constraint region is nonempty for each point x generated by the algorithm, i. e. , the subproblems always have optimal solutions. The new algorithm has two important properties. The computation of revision parameter for guaranteeing the consistency of quadratic sub-problem and the computation of the second order correction step for superlinear convergence use the same inverse of a matrix per iteration, so the computation amount of the new algorithm will not be increased much more than other SQP type algorithms; Another is that the new algorithm can give automatically a feasible point as a starting point for the quadratic subproblems pe  相似文献   

8.
Based on an augmented Lagrangian line search function, a sequential quadratically constrained quadratic programming method is proposed for solving nonlinearly constrained optimization problems. Compared to quadratic programming solved in the traditional SQP methods, a convex quadratically constrained quadratic programming is solved here to obtain a search direction, and the Maratos effect does not occur without any other corrections. The “active set” strategy used in this subproblem can avoid recalculating the unnecessary gradients and (approximate) Hessian matrices of the constraints. Under certain assumptions, the proposed method is proved to be globally, superlinearly, and quadratically convergent. As an extension, general problems with inequality and equality constraints as well as nonmonotone line search are also considered.  相似文献   

9.
Based on the ideas of norm-relaxed sequential quadratic programming (SQP) method and the strongly sub-feasible direction method, we propose a new SQP algorithm for the solution of nonlinear inequality constrained optimization. Unlike the previous work, at each iteration, the norm-relaxed quadratic programming subproblem (NRQPS) in our algorithm only consists of the constraints corresponding to an estimate of the active set, and the high-order correction direction (used to avoid the Maratos effect) is obtained by solving a system of linear equations (SLE) which also only consists of such a subset of constraints and gradients. Moreover, the line search technique can effectively combine the initialization process with the optimization process, and therefore (if the starting point is not feasible) the iteration points always get into the feasible set after a finite number of iterations. The global convergence is proved under the Mangasarian–Fromovitz constraint qualification (MFCQ), and the superlinear convergence is obtained without assuming the strict complementarity. Finally, the numerical experiments show that the proposed algorithm is effective and promising for the test problems.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号