首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In weighted C-spaces, we establish the solvability of a boundary-value problem for a semilinear elliptic equation of order 2m in a bounded domain with generalized functions given on its boundary, strong power singularities at some points of the boundary, and finite orders of singularities on the entire boundary. The behavior of the solution near the boundary of the domain is analyzed.  相似文献   

2.
In the framework of linear elasticity, singularities occur in domains with non-smooth boundaries. Particularly in Fracture Mechanics, the local stress field near stress concentrations is of interest. In this work, singularities at re-entrant corners or sharp notches in Reissner-Mindlin plates are studied. Therefore, an asymptotic solution of the governing system of partial differential equations is obtained by using a complex potential approach which allows for an efficient calculation of the singularity exponent λ. The effect of the notch opening angle and the boundary conditions on the singularity exponent is discussed. The results show, that it can be distinguished between singularities for symmetric and antisymmetric loading and between singularities of the bending moments and the transverse shear forces. Also, stronger singularities than the classical crack tip singularity with free crack faces are observed. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We consider a Riemann boundary-value problem with infinite Gakhov’s index. The boundary data are defined on positive ray of the real axis. We solve the problem by means of removal of singularity of boundary data at the infinity. This approach is analogous to Gakhov’s method of elimination of singularities in the problemswith finite indices, but we use another eliminating factors.  相似文献   

4.
The possibility to construct the analytic solutions of boundary-value problems of mathematical physics for noncanonical domains is important from the viewpoint of the development of efficient algorithms to quantitatively estimate the characteristics of fields under study. The use of the superposition method allows one to analyze a wide class of specific problems applying the introduced notion of the general solution of a boundary-value problem. However, in this case, some difficulties can arise in the construction of calculation algorithms, because the boundary conditions are incompletely defined on the intervals, where the functions appearing in the general solution are orthogonal to one another. We present examples of problems with such difficulties and study their nature and methods to overcome them. The quantitative estimates of the exactness of constructed solutions are given.  相似文献   

5.
We investigate a meshless method for the accurate and non-oscillatory solution of problems associated with two-dimensional Helmholtz-type equations in the presence of boundary singularities. The governing equation and boundary conditions are approximated by the method of fundamental solutions (MFS). It is well known that the existence of boundary singularities affects adversely the accuracy and convergence of standard numerical methods. The solutions to such problems and/or their corresponding derivatives may have unbounded values in the vicinity of the singularity. This difficulty is overcome by subtracting from the original MFS solution the corresponding singular functions, without an appreciable increase in the computational effort and at the same time keeping the same MFS approximation. Four examples for both the Helmholtz and the modified Helmholtz equations are carefully investigated and the numerical results presented show an excellent performance of the approach developed.  相似文献   

6.
Two methods are described for the a priori location of singularities of solutions to exterior boundary value problems. One uses an expansion for the solution in a circle centered on a regular exterior point P. A singularity lies on the circle of convergence. The envelope of these circles, generated as P makes a circuit about the closed boundary, circumscribes the singularities. The radius of convergence depends on singularities of the solution u(s) and its normal derivative v(s) on the boundary. The second method employs complex characteristics to relate singularities of the boundary data to real singularities of the solution. Integral equations connecting (y), v(s) and the analytic boundary condition are used to continue the data into the complex s-plane and to locate their singularities. Explicit solution of the integral equations is unnecessary; some nonlinear boundary conditions can be handled.  相似文献   

7.
Interface problems modeled by differential equations have many applications in mathematical biology, fluid mechanics, material sciences, and many other areas. Typically, interface problems are characterized by discontinuities in the coefficients and/or the Dirac delta function singularities in the source term. Because of these irregularities, solutions to the differential equations are not smooth or discontinuous. In this paper, some new results on the jump conditions of the solution across the interface are derived using the distribution theory and the theory of weak solutions. Some theoretical results on the boundary singularity in which the singular delta function is at the boundary are obtained. Finally, the proof of the convergency of the immersed boundary (IB) method is presented. The IB method is shown to be first‐order convergent in L norm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The initial/boundary-value problem for isothermal, lattice, semiconductor device modeling is described and analyzed. This nonlinear elliptic/parabolic system of reaction/diffusion/convection type is determined by a Maxwell equation, relating space/charge and the electric field, and by two continuity equations for the free electron and hole carrier concentrations. The Einstein relations for Brownian motion are not assumed in this analysis, so that the electrostatic potential, u, and the carrier concentrations, n and p, are the fundamental dependent variables of the system. The boundary conditions are Dirichlet conditions for dependent variable values on the contact portions of the device, and homogeneous Neumann conditions, expressing insulation, on the complement. Complicating the analysis are the transition singularity points between the mixed boundary conditions, and the field dependence of the mobility and diffusion coefficients. By means of a physically motivated analysis of the convective current component, we are able to uncouple the system by a cyclic horizontal line analysis, without an unreasonable time step restriction. The corresponding linear equations are solved by a contractive inner iteration. The outer iteration is shown to converge to a unique solution of the system, under singularity classification at the transition points. The definition of this outer iteration follows the steady-state Gummel iteration at discrete time steps. An existence theory is a by-product of the analysis, and is separated from uniqueness theory.  相似文献   

9.
We consider boundary-value problems of mathematical diffraction theory and discuss the possibility of reducing them to boundary hypersingular integral equations and solving them numerically. The analytic technique of parametric representations of pseudodifferential and integral operators and the numerical method of discrete singularities are essentially used. We discuss the reasoning in applying this approach to constructing mathematical models of wave diffraction problems and solving them numerically.  相似文献   

10.
Exterior boundary-value problems for the Helmholtz equation can be reduced to boundary integral equations. It is known that the simplest of these fail to be uniquely solvable at certain ‘irregular frequencies.’ For a single smooth scatterer, it is also known that irregular frequencies can be eliminated by using a modified fundamental solution, one that has additional singularities inside the scatterer. This approach is extended to treat the three-dimensional exterior Neumann problem for any finite number of disjoint smooth scatterers, using a fundamental solution that has additional singularities inside every scatterer.  相似文献   

11.
We present a detailed investigation of finite-energy solutions with point-like singularities of the elliptic sine-Gordon equation in a plane. Such solutions are of the bound-state type in the sense of scalar field theory. If the solution has a unique singularity, then it behaves as a soliton-like annular wave packet at a large distance from the singularity. The effective radius of this wave packet is evaluated both analytically and numerically for axially symmetric solutions. The analytical investigation is based on the method of isomonodromy deformations for the third Painlevé equation, which singles out these solutions as separatrices of the manifold of general solutions (with infinite energy). Exact analytical estimates provide a tool for investigating bound-state solutions of the nonintegrable sine-Gordon equation with a nonzero right-hand side. More precisely, for large-intensity fields at the singularity, we derive the critical forcing that allows the existence and stability of a bound state. As an illustration, we consider two applications: a large-area Josephson junction and a nematic liquid crystal in a rotating magnetic field. For each of the examples, we evaluate the critical values of the field that allow finite-energy regimes. These are in good agreement with numerical and experimental data. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 111, No. 1, pp. 15–31, April, 1997.  相似文献   

12.
Steady two-dimensional creeping flows induced by line singularities in the presence of an infinitely long circular cylinder with stick-slip boundary conditions are examined. The singularities considered here include a rotlet, a potential source and a stokeslet located outside a cylinder and lying in a plane containing the cylinder axis. The general exterior boundary value problem is formulated and solved in terms of a stream function by making use of the Fourier expansion method. The solutions for various singularity driven flows in the presence of a cylinder are derived from the general results. The stream function representation of the solutions involves a definite integral whose evaluation depends on a non-dimensional slip parameter l1\lambda_1. For extremal values, l1 = 0\lambda_1 = 0 and l1 = 1\lambda_1 = 1, of the slip parameter our results reduce to solutions of boundary value problems with stick (no-slip) and perfect slip conditions, respectively.¶The slip parameter influences the flow patterns significantly. The plots of streamlines in each case show interesting flow patterns. In particular, in the case of a single rotlet/stokeslet (with axis along y-direction) flows, eddies are observed for various values of l1\lambda_1. The flow fields for a pair of singularities located on either side of the cylinder are also presented. In these flows, eddies of different sizes and shapes exist for various values of l1\lambda_1 and the singularity locations. Plots of the fluid velocity on the surface show locations of the stagnation points on the surface of the cylinder and their dependencies on l1\lambda_1 and singularity locations.  相似文献   

13.
Multi-valued solutions are constructed for 2 × 2 first-order systems using a generalization of the hodograph transformation. The solution is found as a complex analytic function on a complex Riemann surface for which the branch points move as part of the solution. The branch point singularities are envelopes for the characteristics and thus move at the characteristic speeds. We perform an analysis of stability of these singularities with respect to perturbations of the initial data. The generic singularity types are folds, cusps, and nondegenerate umbilic points with non-zero 3-jet. An isolated singularity is generically a square root branch point corresponding to a fold. Two types of collisions between singularities are generic: At a “tangential” collision between two singularities moving at the same characteristic speed, a cube root branch point is formed, corresponding to a cusp. A “non-tangential” collision, between two square root branch points moving at different characteristic speeds, remains a square root branch point at the collision and corresponds to a nondegenerate umbilic point. These results are also valid for a diagonalizable n-th order system for which there are exactly two speeds. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
The first and second one-dimensional boundary-value problems for parabolic equations are investigated in the case where the conjugation conditions for all required orders are not satisfied. The existence and uniqueness are proved. Estimates of solutions in classical and weighted Hölder spaces are obtained. We prove that the violation of conjugation for the given functions on the boundary of the domain at the initial-time moment causes the appearance of singular solutions. The order of singularity (as a power of t) is found for the singular solutions for t = 0.  相似文献   

15.
The singularity structure of solutions of a class of Hamiltonian systems of ordinary differential equations in two dependent variables is studied. It is shown that for any solution, all movable singularities obtained by analytic continuation along a rectifiable curve are at most algebraic branch points.  相似文献   

16.
We define the decomposition of a boundary singularity as a pair (a singularity in the ambient space together with a singularity of the restriction to the boundary). We prove that the Lagrange transform is an involution on the set of boundary singularities that interchanges the singularities that occur in the decomposition of a boundary singularity. We classify the boundary singularities for which both of these singularities are simple. Bibliography: 8 titles.Translated fromTrudy Seminara imeni I. G. Petrovskogo, No. 15, pp. 55–69, 1991.  相似文献   

17.
We investigate asymptotic properties of solutions to mixed boundary value problems of thermopiezoelectricity (thermoelectroelasticity) for homogeneous anisotropic solids with interior cracks. Using the potential methods and theory of pseudodifferential equations on manifolds with boundary we prove the existence and uniqueness of solutions. The singularities and asymptotic behaviour of the mechanical, thermal and electric fields are analysed near the crack edges and near the curves, where the types of boundary conditions change. In particular, for some important classes of anisotropic media we derive explicit expressions for the corresponding stress singularity exponents and demonstrate their dependence on the material parameters. The questions related to the so called oscillating singularities are treated in detail as well. This research was supported by the Georgian National Science Foundation grant GNSF/ST07/3-170 and by the German Research Foundation grant DFG 436 GEO113/8/0-1.  相似文献   

18.
In this paper, a new class of solutions of the vacuum Einstein''s field equations with cosmological constant is obtained. This class of solutions possesses the naked physical singularity. The norm of the Riemann curvature tensor of this class of solutions takes infinity at some points and the solutions do not have any event horizon around the singularity.  相似文献   

19.
瞬态热传导的奇异边界法及其MATLAB实现   总被引:3,自引:2,他引:1       下载免费PDF全文
基于动力学问题时间依赖基本解的奇异边界法是一种无网格边界配点法.该方法引入源点强度因子的概念从而避免了基本解的源点奇异性,具有数学简单、编程容易、精度高等优点.将该方法用于瞬态热传导问题的数值模拟,运用MATLAB实现该问题的数值研究,并创建相应的MATLAB工具箱.针对二维和三维瞬态热传导问题,进行了基于反插值技术和经验公式的奇异边界法MATLAB算例实现.针对支撑圆坯低温瞬态温度场的模拟结果表明,瞬态热传导奇异边界法的MATLAB工具箱具有简单、方便、精确可靠的优点.研究成果有助于发展瞬态热传导的奇异边界法,并为瞬态热传导问题的数值分析和仿真提供了一种简单高效的模拟工具.  相似文献   

20.
In this article we study generalized Nash equilibrium problems (GNEP) and bilevel optimization side by side. This perspective comes from the crucial fact that both problems heavily depend on parametric issues. Observing the intrinsic complexity of GNEP and bilevel optimization, we emphasize that it originates from unavoidable degeneracies occurring in parametric optimization. Under intrinsic complexity, we understand the involved geometrical complexity of Nash equilibria and bilevel feasible sets, such as the appearance of kinks and boundary points, non-closedness, discontinuity and bifurcation effects. The main goal is to illustrate the complexity of those problems originating from parametric optimization and singularity theory. By taking the study of singularities in parametric optimization into account, the structural analysis of Nash equilibria and bilevel feasible sets is performed. For GNEPs, the number of players’ common constraints becomes crucial. In fact, for GNEPs without common constraints and for classical NEPs we show that—generically—all Nash equilibria are jointly nondegenerate Karush–Kuhn–Tucker points. Consequently, they are isolated. However, in presence of common constraints Nash equilibria will constitute a higher dimensional set. In bilevel optimization, we describe the global structure of the bilevel feasible set in case of a one-dimensional leader’s variable. We point out that the typical discontinuities of the leader’s objective function will be caused by follower’s singularities. The latter phenomenon occurs independently of the viewpoint of the optimistic or pessimistic approach. In case of higher dimensions, optimistic and pessimistic approaches are discussed with respect to possible bifurcation of the follower’s solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号