首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An Application of a Mountain Pass Theorem   总被引:3,自引:0,他引:3  
We are concerned with the following Dirichlet problem: −Δu(x) = f(x, u), x∈Ω, uH 1 0(Ω), (P) where f(x, t) ∈C (×ℝ), f(x, t)/t is nondecreasing in t∈ℝ and tends to an L -function q(x) uniformly in x∈Ω as t→ + ∞ (i.e., f(x, t) is asymptotically linear in t at infinity). In this case, an Ambrosetti-Rabinowitz-type condition, that is, for some θ > 2, M > 0, 0 > θF(x, s) ≤f(x, s)s, for all |s|≥M and x∈Ω, (AR) is no longer true, where F(x, s) = ∫ s 0 f(x, t)dt. As is well known, (AR) is an important technical condition in applying Mountain Pass Theorem. In this paper, without assuming (AR) we prove, by using a variant version of Mountain Pass Theorem, that problem (P) has a positive solution under suitable conditions on f(x, t) and q(x). Our methods also work for the case where f(x, t) is superlinear in t at infinity, i.e., q(x) ≡ +∞. Received June 24, 1998, Accepted January 14, 2000.  相似文献   

2.
Consider the Cauchy problem ∂u(x, t)/∂t = ℋu(x, t) (x∈ℤd, t≥ 0) with initial condition u(x, 0) ≡ 1 and with ℋ the Anderson Hamiltonian ℋ = κΔ + ξ. Here Δ is the discrete Laplacian, κ∈ (0, ∞) is a diffusion constant, and ξ = {ξ(x): x∈ℤ d } is an i.i.d.random field taking values in ℝ. G?rtner and Molchanov (1990) have shown that if the law of ξ(0) is nondegenerate, then the solution u is asymptotically intermittent. In the present paper we study the structure of the intermittent peaks for the special case where the law of ξ(0) is (in the vicinity of) the double exponential Prob(ξ(0) > s) = exp[−e s ] (s∈ℝ). Here θ∈ (0, ∞) is a parameter that can be thought of as measuring the degree of disorder in the ξ-field. Our main result is that, for fixed x, y∈ℤ d and t→∈, the correlation coefficient of u(x, t) and u(y, t) converges to ∥w ρ−2 ℓ2Σz ∈ℤd w ρ(x+z)w ρ(y+z). In this expression, ρ = θ/κ while w ρ:ℤd→ℝ+ is given by w ρ = (v ρ) d with v ρ: ℤ→ℝ+ the unique centered ground state (i.e., the solution in ℓ2(ℤ) with minimal l 2-norm) of the 1-dimensional nonlinear equation Δv + 2ρv log v = 0. The uniqueness of the ground state is actually proved only for large ρ, but is conjectured to hold for any ρ∈ (0, ∞). empty It turns out that if the right tail of the law of ξ(0) is thicker (or thinner) than the double exponential, then the correlation coefficient of u(x, t) and u(y, t) converges to δ x, y (resp.the constant function 1). Thus, the double exponential family is the critical class exhibiting a nondegenerate correlation structure. Received: 5 March 1997 / Revised version: 21 September 1998  相似文献   

3.
Summary We consider a model of random walk on ℤν, ν≥2, in a dynamical random environment described by a field ξ={ξ t (x): (t,x)∈ℤν+1}. The random walk transition probabilities are taken as P(X t +1= y|X t = x t =η) =P 0( yx)+ c(yx;η(x)). We assume that the variables {ξ t (x):(t,x) ∈ℤν+1} are i.i.d., that both P 0(u) and c(u;s) are finite range in u, and that the random term c(u;·) is small and with zero average. We prove that the C.L.T. holds almost-surely, with the same parameters as for P 0, for all ν≥2. For ν≥3 there is a finite random (i.e., dependent on ξ) correction to the average of X t , and there is a corresponding random correction of order to the C.L.T.. For ν≥5 there is a finite random correction to the covariance matrix of X t and a corresponding correction of order to the C.L.T.. Proofs are based on some new L p estimates for a class of functionals of the field. Received: 4 January 1996/In revised form: 26 May 1997  相似文献   

4.
Given aL 1(ℝ) and A the generator of an L 1-integrable family of bounded and linear operators defined on a Banach space X, we prove the existence of almost automorphic solution to the semilinear integral equation u(t)= −∞ t a(ts)[Au(s)+f(s,u(s))]ds for each f:ℝ×XX almost automorphic in t, uniformly in xX, and satisfying diverse Lipschitz type conditions. In the scalar case, we prove that aL 1(ℝ) positive, nonincreasing and log-convex is already sufficient.  相似文献   

5.
We study a periodic boundary-value problem for the quasilinear equation u tt u xx =F[u, u t , u x ], u(x, 0)=u(x, π)=0, u(x + ω, t) = u(x, t), x ∈ ℝ t ∈ [0, π], and establish conditions that guarantee the validity of a theorem on unique solvability. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 9, pp. 1293–1296, September, 1998.  相似文献   

6.
We study the continuous as well as the discontinuous solutions of Hamilton-Jacobi equationu t +H(u,Du) =g in ℝ n x ℝ+ withu(x, 0) =u 0(x). The HamiltonianH(s,p) is assumed to be convex and positively homogeneous of degree one inp for eachs in ℝ. IfH is non increasing ins, in general, this problem need not admit a continuous viscosity solution. Even in this case we obtain a formula for discontinuous viscosity solutions.  相似文献   

7.
8.
This paper considers the existence and large time behavior of solutions to the convection-diffusion equation u t −Δu+b(x)·∇(u|u| q −1)=f(x, t) in ℝ n ×[0,∞), where f(x, t) is slowly decaying and q≥1+1/n (or in some particular cases q≥1). The initial condition u 0 is supposed to be in an appropriate L p space. Uniform and nonuniform decay of the solutions will be established depending on the data and the forcing term.This work is partially supported by an AMO Grant  相似文献   

9.
We consider the asymptotic behavior of the solutions ofscaled convection-diffusion equations ∂ t u ɛ (t, x) = κΔ x (t, x) + 1/ɛV(t2,xɛ) ·∇ x u ɛ (t, x) with the initial condition u ɛ(0,x) = u 0(x) as the parameter ɛ↓ 0. Under the assumptions that κ > 0 and V(t, x), (t, x) ∈R d is a d-dimensional,stationary, zero mean, incompressible, Gaussian random field, Markovian and mixing in t we show that the laws of u ɛ(t,·), t≥ 0 in an appropriate functional space converge weakly, as ɛ↓ 0, to a δ-type measureconcentrated on a solution of a certain constant coefficient heat equation. Received: 23 March 2000 / Revised version: 5 March 2001 / Published online: 9 October 2001  相似文献   

10.
This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation the first partial dervative of u to t ,the second the third +α the second partial dervative of u to x ,the second the third +β the third partial dervative of u to x ,the second the thire +γ the fifth partial dervative of u to x = 0,(x,t)∈R^2.We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function uo(x) ∈ H^s(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.  相似文献   

11.
We describe the controllability sets of linear nonautonomous systems = A(t)x + B(t)u, x ∈ ℝ n , uU ⊆ ℝ m , with entire matrix functions A(t) and B(t) and with a linear set U of control constraints. We derive a criterion for the complete controllability of these linear systems in terms of derivatives of the entire matrix functions A(t) and B(t) at zero. This complete controllability criterion is compared with the Kalman and Krasovskii criteria.  相似文献   

12.
In this paper, sufficient conditions are obtained, so that the second order neutral delay differential equation
has a positive and bounded solution, where q, h, fC ([0, ∞), ℝ) such that q(t) ≥ 0, but ≢ 0, h(t) ≤ t, h(t) → ∞ as t → ∞, rC (1) ([0, ∞), (0, ∞)), pC (2) [0, ∞), ℝ), GC(ℝ, ℝ) and τ ∈ ℝ+. In our work r(t) ≡ 1 is admissible and neither we assume G is non-decreasing, xG(x) > 0 for x ≠ 0, nor we take G is Lipschitzian. Hence the results of this paper improve many recent results.   相似文献   

13.
 We prove that the solution u of the equation u t =Δlog u, u>0, in (Ω\{x 0})×(0,T), Ω⊂ℝ2, has removable singularities at {x 0}×(0,T) if and only if for any 0<α<1, 0<a<b<T, there exist constants ρ0, C 1, C 2>0, such that C 1 |xx 0|αu(x,t)≤C 2|xx 0|−α holds for all 0<|xx 0|≤ρ0 and atb. As a consequence we obtain a sufficient condition for removable singularities at {∞}×(0,T) for solutions of the above equation in ℝ2×(0,T) and we prove the existence of infinitely many finite mass solutions for the equation in ℝ2×(0,T) when 0≤u 0L 1 (ℝ2) is radially symmetric and u 0L loc 1(ℝ2). Received: 16 December 2001 / Revised version: 20 May 2002 / Published online: 10 February 2003 Mathematics Subject Classification (1991): 35B40, 35B25, 35K55, 35K65  相似文献   

14.
For the equation K(t)u xx + u tt b 2 K(t)u = 0 in the rectangular domain D = “(x, t)‖ 0 < x < 1, −α < t < β”, where K(t) = (sgnt)|t| m , m > 0, and b > 0, α > 0, and β > 0 are given real numbers, we use the spectral method to obtain necessary and sufficient conditions for the unique solvability of the boundary value problem u(0, t) = u(1, t), u x (0, t) = u x (1, t), −αtβ, u(x, β) = φ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ 1.  相似文献   

15.
This paper deals with conditions for the existence of solutions of the equations
considered in the whole space ℝn, n ≥ 2. The functions A i (x, u, ξ), i = 1,…, n, A 0(x, u), and f(x) can arbitrarily grow as |x| → ∞. These functions satisfy generalized conditions of the monotone operator theory in the arguments u ∈ ℝ and ξ ∈ ℝn. We prove the existence theorem for a solution uW loc 1,p (ℝn) under the condition p > n. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 12, No. 4, pp. 133–147, 2006.  相似文献   

16.
The wave equation, ∂ tt uu, in ℝ n+1, considered with initial data u(x,0)=fH s (ℝ n ) and u’(x,0)=0, has a solution which we denote by . We give almost sharp conditions under which and are bounded from H s (ℝ n ) to L q (ℝ n ).  相似文献   

17.
We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ${u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2}We investigate the behaviour of solution uu(x, t; λ) at λ =  λ* for the non-local porous medium equation ut = (un)xx + lf(u)/(ò-11 f(u)dx)2{u_t = (u^n)_{xx} + {\lambda}f(u)/({\int_{-1}^1} f(u){\rm d}x)^2} with Dirichlet boundary conditions and positive initial data. The function f satisfies: f(s),−f ′ (s) > 0 for s ≥ 0 and s n-1 f(s) is integrable at infinity. Due to the conditions on f, there exists a critical value of parameter λ, say λ*, such that for λ > λ* the solution u = u(x, t; λ) blows up globally in finite time, while for λ ≥ λ* the corresponding steady-state problem does not have any solution. For 0 < λ < λ* there exists a unique steady-state solution w = w(x; λ) while u = u(x, t; λ) is global in time and converges to w as t → ∞. Here we show the global grow-up of critical solution u* =  u(x, t; λ*) (u* (x, t) → ∞, as t → ∞ for all x ? (-1,1){x\in(-1,1)}.  相似文献   

18.
LetG denote the set of decreasingG: ℝ→ℝ withGэ1 on ]−∞,0], and ƒ 0 G(t)dt⩽1. LetX be a compact metric space, andT: X→X a continuous map. Let μ denone aT-invariant ergodic probability measure onX, and assume (X, T, μ) to be aperiodic. LetU⊂X be such that μ(U)>0. Let τ U (x)=inf{k⩾1:T k xεU}, and defineG U (t)=1/u(U)u({xεU:u(UU(x)>t),tεℝ We prove that for μ-a.e.x∈X, there exists a sequence (U n ) n≥1 of neighbourhoods ofx such that {x}=∩ n U n , and for anyGG, there exists a subsequence (n k ) k≥1 withG U n k U weakly. We also construct a uniquely ergodic Toeplitz flowO(x ,S, μ), the orbit closure of a Toeplitz sequencex , such that the above conclusion still holds, with moreover the requirement that eachU n be a cylinder set. In memory of Anzelm Iwanik  相似文献   

19.
We study the periodic solution of a perturbed regularized Boussinesq system (Bona et al., J. Nonlinear Sci. 12:283–318, 2002, Bona et al., Nonlinearity 17:925–952, 2004), namely the system η t +u x +β(−η xxt +u xxx )+α((ηu) x +ηη x +uu x )=0,u t +η x +β(η xxx u xxt )+α((ηu) x +ηη x +uu x )=0, with 0<α,β≤1. We prove that the solution, starting from an initial datum of size ε, remains smaller than ε for a time scale of order (ε −1 α −1 β)2, whereas the natural time is of order ε −1 α −1 β.  相似文献   

20.
We study the problem of existence of periodic and almost periodic solutions of the scalar equation x′ (t) = − δx(t) + pmax u∈[th, t] x(u) + f(t) where δ, pR, with a periodic (almost periodic) perturbation f(t). For these solutions, we establish conditions of global exponential stability and prove uniqueness theorems. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 6, pp. 747–754, June, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号