首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
在不同热弹性扩散理论的框架中,无应力作用、恒温/绝热、化学势条件下,研究了均匀、横观各向同性无穷板中热弹性扩散环形峰波的传播.得到了热弹性扩散Lamb型波的色散方程.同时推演出色散方程的一些特例.  相似文献   

2.
研究了在应力自由和刚性固定边界条件下,无能量耗散的均匀、各向同性微极热弹性无限板的轴对称自由振动波的传播,导出了相应的对称和斜对称模态波传播的闭合式特征方程和不同区域的特征方程.对短波的情况,应力自由热绝缘和等温板中对称和斜对称模态波传播的特征方程退化为Rayleigh表面波频率方程.根据导出的特征方程得到了热弹性、微极弹性和弹性板的结果.在对称和斜对称运动中计算了板的位移分量幅值、微转动幅值和温度分布,给出了对称和斜对称模式的频散曲线,并示出了位移分量和微转动幅值和温度分布的曲线.能够发现理论分析和数值结论是非常一致的.  相似文献   

3.
The problem of symmetric and anti-symmetric vibrations in micropolar thermoelastic plate with voids has been investigated. The dispersive frequency equations are obtained for different surface waves propagating in the plate. The velocity curves are depicted for the symmetric and anti-symmetric vibrations, plate, Rayleigh and flexural waves. It is found that there exist two modes in the solution of frequency equation for the surface waves in micropolar thermoelastic plate with voids. We have observed that the first modes of velocity ratios of corresponding surface waves are lesser than those of second mode of vibration.  相似文献   

4.
In the present work, the effect of longitudinal magnetic field on wave dispersion characteristics of equivalent continuum structure (ECS) of single-walled carbon nanotubes (SWCNT) embedded in elastic medium is studied. The ECS is modelled as an Euler–Bernoulli beam. The chemical bonds between a SWCNT and the elastic medium are assumed to be formed. The elastic matrix is described by Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation. The governing equations of motion for the ECS of SWCNT under a longitudinal magnetic field are derived by considering the Lorentz magnetic force obtained from Maxwell’s relations within the frame work of nonlocal elasticity theory. The wave propagation analysis is performed using spectral analysis. The results obtained show that the velocity of flexural waves in SWCNTs increases with the increase of longitudinal magnetic field exerted on it in the frequency range; 0–20 THz. The present analysis also shows that the flexural wave dispersion in the ECS of SWCNT obtained by local and nonlocal elasticity theories differ. It is found that the nonlocality reduces the wave velocity irrespective of the presence of the magnetic field and does not influences it in the higher frequency region. Further it is found that the presence of elastic matrix introduces the frequency band gap in flexural wave mode. The band gap in the flexural wave is found to independent of strength of the longitudinal magnetic field.  相似文献   

5.
研究了无应力作用条件下,均匀、各向同性、圆柱形微极结构弹性板中波的传播.导出了对称和斜对称模式下波传播的特征方程.对短波这一极端情况,无应力圆板中对称和斜对称模态波的特征方程退化为Pmyle曲表面波频率方程.并得到薄板的计算结果.给出了位移和微转动分量,并绘制了相应图形.给出了若干特殊情况的研究结果及对称和斜对称模态特征方程的图示.  相似文献   

6.
On the boundaries of such an isolated porous Biot layer, the total stresses and normal relative displacement are equal to zero. For this layer, the symmetric and antisymmetric dispersion equations are established and investigated. The wave field consists of normal waves. In this layer, one bending wave, two plate waves, and infinitely many normal waves propagate. For all these waves, we determine dispersion curves by analytical methods. The velocities of the bending wave and the second plate wave for the infinite frequency are equal to the Rayleigh velocity. Bibliography: 7 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 354, 2008, pp. 173–189.  相似文献   

7.
In this paper, mathematical modeling of the propagation of Love waves in a fluid-saturated porous layer under a rigid boundary and lying over an elastic half-space under gravity has been considered. The equations of motion have been formulated separately for different media under suitable boundary conditions at the interface of porous layer, elastic half-space under gravity and rigid layer. Following Biot, the frequency equation has been derived which contain Whittaker’s function and its derivative that have been expanded asymptotically up to second term (for approximate result) for large argument due to small values of Biot’s gravity parameter (varying from 0 to 1). The effect of porosity and gravity of the layers in the propagation of Love waves has been studied. The effect of hydrostatic initial stress generated due to gravity in the half-space has also been shown in the phase velocity of Love waves. The phase velocity of Love waves for first two modes has been presented graphically. Frequency equations have also been derived for some particular cases, which are in perfect agreement with standard results. Subsequently the lower and upper bounds of Love wave speed have also been discussed.  相似文献   

8.
The model equations of the catalytic fixed-bed reactor often possess solutions in the form of travelling wave fronts similar to the well-known case of Fisher's equation. The mathematical investigation of these waves requires searching for solutions of singular boundary value problems in the phase plane or in the three-dimensional phase space. In this paper necesary and sufficient conditions are derived which are to be satisfied by the model parameters and the propagation velocity of the wave front if wave solutions exist. Moreover, sufficient conditions for the asymptotic stability of these solutions are proved where the perturbations are supposed to belong to a certain weighted L2-space. Finally, the connection between the initial distribution of the state variable and the velocity of the wave is discussed.  相似文献   

9.
The propagation of thermoelastic waves along circumferential direction in homogeneous, isotropic, cylindrical curved solid plates with voids has been investigated in the context of linear generalized theory of thermoelasticity. The plate is subjected to stress free or rigidly fixed, thermally insulated or isothermal boundary conditions. Mathematical modeling of the problem for the considered cylindrical curved plate with voids leads to a system of coupled partial differential equations. The model has been simplified by using the Helmholtz decomposition technique and the resulting equations are solved by using the method of separation of variables. The formal solution obtained by using Bessel’s functions with complex arguments is utilized to derive the secular equations which govern the wave motion in the plate with voids. The longitudinal shear motion and axially symmetric shear vibration modes get decoupled from the rest of the motion in contrast to non-axially symmetric plane strain vibrations. These modes remain unaffected due to thermal variations and presence of voids. In order to illustrate theoretical developments, numerical solutions have been carried out for a stress free, thermally insulated or isothermal magnesium plate and are presented graphically. The obtained results are also compared with those available in the literature.  相似文献   

10.
In this paper the influence of the gravity field, relaxation times and initial stress on propagation of Rayleigh waves in an orthotropic magneto-thermoelastic solid medium has been investigated. The solution of the more general equations are obtained for thermoelastic coupling by Helmoltz’s theorem. The frequency equation which determines Rayleigh wave velocity have been obtained. Many special cases are investigated from the present problem. Numerical results analyzing the frequency equation are obtained and presented graphically. Relevant results of previous investigations are deduced as special cases from these results. The results indicate that the effect of initial stress, magnetic field and gravity field are very pronounced.  相似文献   

11.
This paper is concerned with the Rayleigh wave dispersion in an incompressible functionally graded orthotropic half-space loaded by a thin fluid-saturated aeolotropic porous layer under initial stress. Both the layer and half-space have subjected to the incompressible in nature. The particle motion of the Rayleigh type wave is elliptically polarized in the plane, which described by the normal to the surface and the focal point along with wave generation. The dispersion of waves refers typically to frequency dispersion, which means different wavelengths travel at a different velocity of phase. To deal with the analytical solution of displacement components of Rayleigh type waves in a layer over a half-space, we have taken the assistance of different methods like exponential, characteristic polynomial and undetermined coefficients. The dispersion relation has been derived based upon suitable boundary conditions. The finite difference scheme has been introduced to calculate the phase velocity and group velocity of the Rayleigh type waves. We also have derived the stability condition of the finite difference scheme (FDS) for the phase and group velocities. If a wave equation has to travel in the time domain, it is necessary to achieve both accuracy and stability requirements. In such cases, FDS is preferred because of its power, accuracy, reliability, rapidity, and flexibility. The effect of various parameters involved in the model like non-homogeneity, porosity, and internal pre-stress on the propagation of Rayleigh type waves have been studied in detail. Graphical representations for the effects of various parameters on the dispersion equation have been represented. Numerical results demonstrated the accuracy and versatility of the group and phase velocity depending on the stability ratio of the FDS.  相似文献   

12.
Wave structure interaction problems in a three-layer fluid having an elastic plate covered free surface are studied in a three-dimensional fluid domain in both the cases of finite and infinite water depths. Wave characteristics are analyzed from the dispersion relation of the associated wave motion, and approximate results are derived in both the cases of deep water and shallow water waves. Further, the expansion formulae and the associated orthogonal mode-coupling relations are derived for the velocity potentials for the wave structure interaction problems in channels of finite and infinite depths. The utility of the expansion formulae is demonstrated by (1) deriving the source potentials associated with the wave structure interaction problems in a three-layer fluid medium of finite and infinite water depths and (2) analyzing the wave scattering by a partially frozen crack in a floating ice sheet in the three-layer fluid medium in a three-dimensional channel of finite water depth. Various results derived can be used to deal with acoustic wave interaction with flexible structures and other wave structure interaction problems of similar nature arising in different branches of physics and engineering.  相似文献   

13.
Energy decay rate of the thermoelastic Bresse system   总被引:1,自引:0,他引:1  
In this paper, we study the energy decay rate for the thermoelastic Bresse system which describes the motion of a linear planar, shearable thermoelastic beam. If the longitudinal motion and heat transfer are neglected, this model reduces to the well-known thermoelastic Timoshenko beam equations. The system consists of three wave equations and two heat equations coupled in certain pattern. The two wave equations about the longitudinal displacement and shear angle displacement are effectively damped by the dissipation from the two heat equations. Actually, the corresponding energy decays exponentially like the classical one-dimensional thermoelastic system. However, the third wave equation about the vertical displacement is only weakly damped. Thus the decay rate of the energy of the overall system is still unknown. We will show that the exponentially decay rate is preserved when the wave speed of the vertical displacement coincides with the wave speed of longitudinal displacement or of the shear angle displacement. Otherwise, only a polynomial type decay rate can be obtained. These results are proved by verifying the frequency domain conditions.   相似文献   

14.
In the present investigation, we discuss two different problems namely
  1. Rayleigh-Lamb problem in micropolar generalized thermoelastic layer with stretch and
  2. Rayleigh wave in a micropolar generalized thermoelastic half-space with stretch. The frequency and wave velocity equations for symmetric and anti-symmetric vibrations are obtained for the first problem. The frequency equation has also been derived for the second problem. The special cases of the above said problems of micropolar generalized thermoelasticity with stretch for Green-Lindsay and Lord-Shulman theory have been discussed in detail. Results of these analysis reduce to those without thermal and stretch effects
  相似文献   

15.
In this article the characteristics of the extensional and flexural modes, propagating in a thermoelastic orthotropic layer lying over a viscoelastic half-space, are analyzed. The complete analysis is carried out in the framework of a thermodynamically consistent hyperbolic type heat conduction model without energy dissipation. The normal-mode-analysis is adopted and a general form of dispersive equation is derived for an anisotropic thermoelastic layered medium. A prominent distinction with the isotropic elastic solids is observed in the symmetric as well as anti-symmetric modes of dispersion curves. In turn, such deformation reshapes the wave propagation while the deformation stiffening changes significantly the phase velocities of the wave till the acoustic radiation stresses are balanced by elastic stresses in the current configuration of the hyperelastic medium.  相似文献   

16.
Thermal post-buckling paths of homogeneous, isotropic, square plate configurations resting on elastic foundation (Winkler type) subjected to biaxial compressive thermal loads are expressed as simple closed-form solutions by using the Rayleigh–Ritz method based on coupled displacement fields. Geometric non-linearity of von-Karman type is considered. The in-plane displacement field variations used in the formulation of Rayleigh–Ritz method are derived by using the governing in-plane static differential equations of the plate which in turn simplifies the difficulty of assuming an in-plane displacement field variations of the square plate. Accuracy and robustness of the proposed closed-form solutions are demonstrated by using the non-linear finite element formulation results which are obtained from an equilibrium path approach.  相似文献   

17.
The equations describing the three-dimensional equatorial dynamics of an ideal electrically conducting inhomogeneous rotating fluid are studied. The magnetic and velocity fields are represented as superpositions of unperturbed steady-state fields and those induced by wave motion. As a result, after introducing two auxiliary functions, the equations are reduced to a special scalar one. Based on the study of this equation, the solvability of initial-boundary value problems arising in the theory of waves propagating in a spherical layer of an electrically conducting density-inhomogeneous rotating fluid in an equatorial zone is analyzed. Particular solutions of the scalar equation are constructed that describe small-amplitude wave propagation.  相似文献   

18.
The paper presents a study of propagation of shear wave (SH‐wave) in an orthotropic elastic medium under initial stress sandwiched by a homogeneous semi‐infinite medium and an inhomogeneous half‐space. The technique of separation of variables has been adopted to get the analytical solutions for the dispersion relation in a closed form. The propagation of SH‐waves is influenced by inhomogeneity parameters and initial stress parameter. Velocities of SH‐waves are calculated numerically for different cases. As a special case when the intermediate layer and half‐space are homogeneous, computed frequency equation coincides with general equation of Love wave. To study the effect of inhomogeneity parameters and initial stress parameter, we have plotted the velocity of SH‐wave in several figures and observed that the velocity of wave decreases with the increases of non‐dimensional wave number. It can be found that the phase velocity decreases with the increase of inhomogeneity parameters. We observed that the velocity of SH‐wave decreases with the increases of initial stress parameter in both homogeneous and inhomogeneous media. GUI has been developed by using MATLAB to generalize the effect of the parameters discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Rossby Waves     
An asymptotic solution of the linear shallow water equations for small Rossby number is constructed to describe Ross by waves. It leads to a dispersion or eiconal equation for the phase of the waves and a transport equation for their amplitude. It is shown how these equations can be solved by means of rays for both planetary and topographic Rossby waves. The method is illustrated by constructing the wave field produced by a time harmonic point source in fluid of uniform depth. This solution is a Green's function for the equations.  相似文献   

20.
A model equation governing the primitive dynamics of wave packets near an extremum of the linear dispersion relation at finite wavenumber is derived. In two spatial dimensions, we include the effects of weak variation of the wave in the direction transverse to the direction of propagation. The resulting equation is contrasted with the Kadomtsev–Petviashvilli and Nonlinear Schrödinger (NLS) equations. The model is derived as an approximation to the equations for deep water gravity-capillary waves, but has wider applications. Both line solitary waves and solitary waves which decay in both the transverse and propagating directions—lump solitary waves—are computed. The stability of these waves is investigated and their dynamics are studied via numerical time evolution of the equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号