首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let X1,…, Xn be i.i.d. random variables symmetric about zero. Let Ri(t) be the rank of |Xitn−1/2| among |X1tn−1/2|,…, |Xntn−1/2| and Tn(t) = Σi = 1nφ((n + 1)−1Ri(t))sign(Xitn−1/2). We show that there exists a sequence of random variables Vn such that sup0 ≤ t ≤ 1 |Tn(t) − Tn(0) − tVn| → 0 in probability, as n → ∞. Vn is asymptotically normal.  相似文献   

2.
We study the asymptotic behavior of the maximal multiplicity μn = μn(λ) of the parts in a partition λ of the positive integer n, assuming that λ is chosen uniformly at random from the set of all such partitions. We prove that πμn/(6n)1/2 converges weakly to max jXj/j as n→∞, where X1, X2, … are independent and exponentially distributed random variables with common mean equal to 1.2000 Mathematics Subject Classification: Primary—05A17; Secondary—11P82, 60C05, 60F05  相似文献   

3.
Denote by (t)=∑n1e−λnt, t>0, the spectral function related to the Dirichlet Laplacian for the typical cell of a standard Poisson–Voronoi tessellation in . We show that the expectation E(t), t>0, is a functional of the convex hull of a standard d-dimensional Brownian bridge. This enables us to study the asymptotic behaviour of E(t), when t→0+,+∞. In particular, we prove that the law of the first eigenvalue λ1 of satisfies the asymptotic relation lnP1t}−2dωdj(d−2)/2d·td/2 when t→0+, where ωd and j(d−2)/2 are respectively the Lebesgue measure of the unit ball in and the first zero of the Bessel function J(d−2)/2.  相似文献   

4.
We approximate the unit step function, which equals 1 if t ε [0, T] and equals 0 if t > T, by functions of the form ∑n = 1N AxnN e−λnt/T, where each λn is a given positive constant. We find the coefficients An(N) by minimizing the integrated square of the difference between the unit step function and the approximating function. We first solve the specialized case where each λn = n. The resulting sum can be shown to converge in the mean to the unit step function as N → ∞. The general case is then solved and some interesting properties of the numbers An(N) are noted.  相似文献   

5.
The behavior of the posterior for a large observation is considered. Two basic situations are discussed; location vectors and natural parameters.Let X = (X1, X2, …, Xn) be an observation from a multivariate exponential distribution with that natural parameter Θ = (Θ1, Θ2, …, Θn). Let θx* be the posterior mode. Sufficient conditions are presented for the distribution of Θ − θx* given X = x to converge to a multivariate normal with mean vector 0 as |x| tends to infinity. These same conditions imply that E(Θ | X = x) − θx* converges to the zero vector as |x| tends to infinity.The posterior for an observation X = (X1, X2, …, Xn is considered for a location vector Θ = (Θ1, Θ2, …, Θn) as x gets large along a path, γ, in Rn. Sufficient conditions are given for the distribution of γ(t) − Θ given X = γ(t) to converge in law as t → ∞. Slightly stronger conditions ensure that γ(t) − E(Θ | X = γ(t)) converges to the mean of the limiting distribution.These basic results about the posterior mean are extended to cover other estimators. Loss functions which are convex functions of absolute error are considered. Let δ be a Bayes estimator for a loss function of this type. Generally, if the distribution of Θ − E(Θ | X = γ(t)) given X = γ(t) converges in law to a symmetric distribution as t → ∞, it is shown that δ(γ(t)) − E(Θ | X = γ(t)) → 0 as t → ∞.  相似文献   

6.
On positive solutions of some nonlinear fourth-order beam equations   总被引:3,自引:0,他引:3  
The existence, uniqueness and multiplicity of positive solutions of the following boundary value problem is considered:
u(4)(t)−λf(t,u(t))=0, for 0<t<1,u(0)=u(1)=u″(0)=u″(1)=0,
where λ>0 is a constant, f :[0,1]×[0,+∞)→[0,+∞) is continuous.  相似文献   

7.
In the paper sufficient conditions are given under which the differential equation y(n)=f(t,y,…,y(n−2))g(y(n−1)) has a singular solution y :[T,τ)→R, τ<∞ fulfilling
  相似文献   

8.
A new class of symmetric polynomials in n variables z = (z1,…, zn), denoted tλ(z), and labelled by partitions λ = [λ1 … λn] is defined in terms of standard tableaux (equivalently, in terms of Gel'fand-Weyl patterns of the general linear group GL(n,C)). The tλ(z) are shown to be a -basis of the ring of all symmetric polynomials in n variables. In contrast to the usual basis sets such as the Schur functions eλ(z), which are homogeneous polynomials in the zi, the tλ(z) are inhomogeneous. This property is reflected in the fact that the tλ(z) are a natural basis for the expansion of certain (inhomogeneous) symmetric polynomials constructed from rising factorials. This and several other properties of the tλ(z) are proved. Two generalizations of the tλ(z) are also given. The first generalizes the tλ(z) to a 1-parameter family of symmetric polynomials, Tλ(α; z), where α is an arbitrary parameter. The Tλ(α; z) are shown to possess properties similar to those of the tλ(z). The second generalizes the tλ(z) to a class of skew-tableau symmetric polynomials, tλ/μ(z), for which only a few preliminary results are given.  相似文献   

9.
This is a systematic and unified treatment of a variety of seemingly different strong limit problems. The main emphasis is laid on the study of the a.s. behavior of the rectangular means ζmn = 1/(λ1(m) λ2(n)) Σi=1m Σk=1n Xik as either max{m, n} → ∞ or min{m, n} → ∞. Here {Xik: i, k ≥ 1} is an orthogonal or merely quasi-orthogonal random field, whereas {λ1(m): m ≥ 1} and {λ2(n): n ≥ 1} are nondecreasing sequences of positive numbers subject to certain growth conditions. The method applied provides the rate of convergence, as well. The sufficient conditions obtained are shown to be the best possible in general. Results on double subsequences and 1-parameter limit theorems are also included.  相似文献   

10.
Let wλ(x)(1−x2)λ−1/2 and Pn(λ) be the ultraspherical polynomials with respect to wλ(x). Then we denote En+1(λ) the Stieltjes polynomials with respect to wλ(x) satisfyingIn this paper, we give estimates for the first and second derivatives of the Stieltjes polynomials En+1(λ) and the product En+1(λ)Pn(λ) by obtaining the asymptotic differential relations. Moreover, using these differential relations we estimate the second derivatives of En+1(λ)(x) and En+1(λ)(x)Pn(λ)(x) at the zeros of En+1(λ)(x) and the product En+1(λ)(x)Pn(λ)(x), respectively.  相似文献   

11.
This paper discusses the problem of choosing the Lagrange interpolation points T = (t0, t1,…, tn) in the interval −1 t 1 to minimize the norm of the error, considered as an operator from the Hardy space H2(R) of analytic functions to the space C[−1, 1]. It is shown that such optimal choices converge for fixed n, as R → ∞, to the zeros of a Chebyshev polynomial. Asymptotic estimates are given for the norm of the error for these optimal interpolations, as n → ∞ for fixed R. These results are then related to the problem of choosing optimal interpolation points with respect to the Eberlein integral. This integral is based on a probability measure over certain classes of analytic functions, and is used to provide an average interpolation error over these classes. The Chebyshev points are seen to be limits of optimal choices in this case also.  相似文献   

12.
Let z(t) ∈ Rn be a generalized Poisson process with parameter λ and let A: RnRn be a linear operator. The conditions of existence and limiting properties as λ → ∞ or as λ → 0 of the stationary distribution of the process x(t) ∈ Rn which satisfies the equation dx(t) = Ax(t)dt + dz(t) are investigated.  相似文献   

13.
L estimates are derived for the oscillatory integral ∫+0ei(xλ + (1/m) tλm)a(λ) dλ, where 2 ≤ m and (x, t) × +. The amplitude a(λ) can be oscillatory, e.g., a(λ) = eit (λ) with (λ) a polynomial of degree ≤ m − 1, or it can be of polynomial type, e.g., a(λ) = (1 + λ)k with 0 ≤ k ≤ (m − 2). The estimates are applied to the study of solutions of certain linear pseudodifferential equations, of the generalized Schrödinger or Airy type, and of associated semilinear equations.  相似文献   

14.
In a sequence ofn independent random variables the pdf changes fromf(x, 0) tof(x, 0 + δvn−1) after the first variables. The problem is to estimateλ (0, 1 ), where 0 and δ are unknownd-dim parameters andvn → ∞ slower thann1/2. Letn denote the maximum likelihood estimator (mle) ofλ. Analyzing the local behavior of the likelihood function near the true parameter values it is shown under regularity conditions that ifnn2(− λ) is bounded in probability asn → ∞, then it converges in law to the timeT(δjδ)1/2 at which a two-sided Brownian motion (B.M.) with drift1/2(δ′Jδ)1/2ton(−∞, ∞) attains its a.s. unique minimum, whereJ denotes the Fisher-information matrix. This generalizes the result for small change in mean of univariate normal random variables obtained by Bhattacharya and Brockwell (1976,Z. Warsch. Verw. Gebiete37, 51–75) who also derived the distribution ofTμ forμ > 0. For the general case an alternative estimator is constructed by a three-step procedure which is shown to have the above asymptotic distribution. In the important case of multiparameter exponential families, the construction of this estimator is considerably simplified.  相似文献   

15.
A recent method of Soundararajan enables one to obtain improved Ω-result for finite series of the form ∑nf(n) cos (2πλnx+β) where 0≤λ1λ2≤. . . and β are real numbers and the coefficients f(n) are all non-negative. In this paper, Soundararajan’s method is adapted to obtain improved Ω-result for E(t), the remainder term in the mean-square formula for the Riemann zeta-function on the critical line. The Atkinson series for E(t) is of the above type, but with an oscillating factor (−1)n attached to each of its terms.  相似文献   

16.
Let {vij; i, J = 1, 2, …} be a family of i.i.d. random variables with E(v114) = ∞. For positive integers p, n with p = p(n) and p/ny > 0 as n → ∞, let Mn = (1/n) Vn VnT , where Vn = (vij)1 ≤ ip, 1 ≤ jn, and let λmax(n) denote the largest eigenvalue of Mn. It is shown that a.s. This result verifies the boundedness of E(v114) to be the weakest condition known to assure the almost sure convergence of λmax(n) for a class of sample covariance matrices.  相似文献   

17.
Let ga(t) and gb(t) be two positive, strictly convex and continuously differentiable functions on an interval (a, b) (−∞ a < b ∞), and let {Ln} be a sequence of linear positive operators, each with domain containing 1, t, ga(t), and gb(t). If Ln(ƒ; x) converges to ƒ(x) uniformly on a compact subset of (a, b) for the test functions ƒ(t) = 1, t, ga(t), gb(t), then so does every ƒ ε C(a, b) satisfying ƒ(t) = O(ga(t)) (ta+) and ƒ(t) = O(gb(t)) (tb). We estimate the convergence rate of Lnƒ in terms of the rates for the test functions and the moduli of continuity of ƒ and ƒ′.  相似文献   

18.
In this paper, we consider a problem of the type −Δu = λ(f(u) + μg(u)) in Ω, u¦∂Ω = 0, where Ω Rn is an open-bounded set, f, g are continuous real functions on R, and λ, μ ε R. As an application of a new approach to nonlinear eigenvalues problems, we prove that, under suitable hypotheses, if ¦μ¦ is small enough, then there is some λ > 0 such that the above problem has at least three distinct weak solutions in W01,2(Ω).  相似文献   

19.
Le nombre maximal de lignes de matrices seront désignées par:
1. (a) R(k, λ) si chaque ligne est une permutation de nombres 1, 2,…, k et si chaque deux lignes différentes coïncide selon λ positions;
2. (b) S0(k, λ) si le nombre de colonnes est k et si chaque deux lignes différentes coïncide selon λ positions et si, en plus, il existe une colonne avec les éléments y1, y2, y3, ou y1 = y2y3;
3. (c) T0(k, λ) si c'est une (0, 1)-matrice et si chaque ligne contient k unités et si chaque deux lignes différentes contient les unités selon λ positions et si, en plus, il existe une colonne avec les éléments 1, 1, 0.
La fonction T0(k, λ) était introduite par Chvátal et dans les articles de Deza, Mullin, van Lint, Vanstone, on montrait que T0(k, λ) max(λ + 2, (k − λ)2 + k − λ + 1). La fonction S0(k, λ) est introduite ici et dans le Théorème 1 elle est étudiée analogiquement; dans les remarques 4, 5, 6, 7 on donne les généralisations de problèmes concernant T0(k, λ), S0(k, λ), dans la remarque 9 on généralise le problème concernant R(k, λ). La fonction R(k, λ) était introduite et étudiée par Bolton. Ci-après, on montre que R(k, λ) S0(k, λ) T0(k, λ) d'où découle en particulier: R(k, λ) λ + 2 pour λ k + 1 − (k + 2)1/2; R(k, λ) = 0(k2) pour k − λ = 0(k); R(k, λ) (k − 1)2 − (k + 2) pour k 1191.  相似文献   

20.
Let {Xn} be a strictly stationary φ-mixing process with Σj=1 φ1/2(j) < ∞. It is shown in the paper that if X1 is uniformly distributed on the unit interval, then, for any t [0, 1], |Fn−1(t) − t + Fn(t) − t| = O(n−3/4(log log n)3/4) a.s. and sup0≤t≤1 |Fn−1(t) − t + Fn(t) − t| = (O(n−3/4(log n)1/2(log log n)1/4) a.s., where Fn and Fn−1(t) denote the sample distribution function and tth sample quantile, respectively. In case {Xn} is strong mixing with exponentially decaying mixing coefficients, it is shown that, for any t [0, 1], |Fn−1(t) − t + Fn(t) − t| = O(n−3/4(log n)1/2(log log n)3/4) a.s. and sup0≤t≤1 |Fn−1(t) − t + Fn(t) − t| = O(n−3/4(log n)(log log n)1/4) a.s. The results are further extended to general distributions, including some nonregular cases, when the underlying distribution function is not differentiable. The results for φ-mixing processes give the sharpest possible orders in view of the corresponding results of Kiefer for independent random variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号