首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
基于邻近度量函数的最小值,对P*(κ)阵线性互补问题提出了一种新的宽邻域预估-校正算法,在较一般的条件下,证明了算法的迭代复杂性为O(κ+1)23n log(x0ε)Ts0.算法既可视为Miao的P*(κ)阵线性互补问题Mizuno-Todd-Ye预估-校正内点算法的一种变形,也可以视为最近Zhao提出的线性规划基于邻近度量函数最小值的宽邻域内点算法的推广.  相似文献   

2.
Mehrotra型预估-校正算法是很多内点算法软件包的算法基础,但它的多项式迭代复杂性直到2007年才被Salahi等人证明.通过选择一个固定的预估步长及与Salahi文中不同的校正方向,本文把Salahi等人的算法拓展到单调线性互补问题,使得新算法的迭代复杂性为O(n log((x0)T s0/ε)),同时,初步的数值实验证明了新算法是有效的.  相似文献   

3.
柏钦玺  黄崇超  王雪 《数学杂志》2006,26(4):431-436
本文研究带线性约束的框式线性规划问题,给出了一个预估校正内点算法,分析了该算法的多项式计算复杂性,并证明其迭代复杂度为Ο(nL).  相似文献   

4.
本文提出一种求解单调非线性互补问题的Mehrotra型预估-校正算法.新算法采用不同的自适应更新策略.在尺度化的Lipschitz条件下,证明了新算法的迭代复杂性为O(n2 log (x0)T s0/ε)),其中(x0,s0)为初始点,ε为精度.  相似文献   

5.
本文研究了线性互补问题内点算法.利用全牛顿步长求解迭代方向,获得了算法迭代复杂性为O(nlogn/ε),推广了Roos等关于线性规划问题不可行内点算法,其复杂性与目前最好的不可行内点算法复杂性一致.  相似文献   

6.
本文对P_*(κ)线性互补问题设计了一种基于核函数的全-Newton步不可行内点算法,是对Mansouri等人提出的单调线性互补问题全-Newton步不可行内点算法的改进与推广.算法的主迭代由一个可行步和几个中心步构成且可行步采用小步校正.通过建立和应用一些新的技术性结果,证明了算法的多项式复杂性为O((1+2κ)~(3/2)(1og_2log_264(1+2κ))nlogmax{(x0)Ts0,||r0||}/ε),当k=0时,与当前单调线性互补问题的不可行内点算法最好的迭代复杂性界一致.最后,用Matlab数值实验验证了算法的可行性.  相似文献   

7.
基于不可行内点法和预估-校正算法的思想,提出两个新的求解二阶锥规划的内点预估-校正算法.其预估方向分别是Newton方向和Euler方向,校正方向属于Alizadeh-Haeberly-Overton(AHO)方向的范畴.算法对于迭代点可行或不可行的情形都适用.主要构造了一个更简单的中心路径的邻域,这是有别于其它内点预估-校正算法的关键.在一些假设条件下,算法具有全局收敛性、线性和二次收敛速度,并获得了O(rln(ε0/ε))的迭代复杂性界,其中r表示二阶锥规划问题所包含的二阶锥约束的个数.数值实验结果表明提出的两个算法是有效的.  相似文献   

8.
最近,Salahi对线性规划提出了一个基于新的自适应参数校正策略的Mehrotra型预估-校正算法,该策略使其在不使用安全策略的情况下,证明了算法的多项式迭代复杂界.本文将这一算法推广到半定规划的情形.通过利用Zhang的对称化技术,得到了算法的多项式迭代复杂界,这与求解线性规划的相应算法有相同的迭代复杂性阶.  相似文献   

9.
张明望 《数学杂志》2004,24(5):585-590
对于一类非单调线性互补问题提出了一个新算法:高阶Dikin型仿射尺度算法,算法的每步迭代.基于线性规划Dikin原始-对偶算法思想来求解一个线性方程组得到迭代方向,再适当选取步长,得到了算法的多项式复杂性。  相似文献   

10.
本文研究了P(K)-阵线性互补问题宽邻域高阶内点算法.利用线性规划的原始-对偶仿射尺度算法来确定迭代方向,得到了算法的收敛性及迭代复杂性,其算法是有效可行的.  相似文献   

11.
一类凸规划的多项式预估校正内点法   总被引:2,自引:0,他引:2  
1、引言 1990年由Mehrotra对线性规划问题提出了一个称为预估校正的方法,并在1992年给出了其数值算法.1993年Mizuno,Todd和Y.Ye.给出了改进的预估校正内点法,使得一个预估步后只跟一个校正步.1994年F.A.Potra给出了不可行预估校正内点法,使得可以从一个不可行的初始点开始算法的迭代,并证明了其为二次收敛.  相似文献   

12.
This article presents a polynomial predictor-corrector interior-point algorithm for convex quadratic programming based on a modified predictor-corrector interior-point algorithm. In this algorithm, there is only one corrector step after each predictor step, where Step 2 is a predictor step and Step 4 is a corrector step in the algorithm. In the algorithm, the predictor step decreases the dual gap as much as possible in a wider neighborhood of the central path and the corrector step draws iteration points back to a narrower neighborhood and make a reduction for the dual gap. It is shown that the algorithm has O(n~(1/2)L) iteration complexity which is the best result for convex quadratic programming so far.  相似文献   

13.
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interior-point method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.  相似文献   

14.
Mehrotra's predictor-corrector algorithm [3] is currently considered to be one of the most practically efficient interior-point methods for linear programming. Recently, Zhang and Zhang [18] studied the global convergence properties of the Mehrotra-type predictor-corrector approach and established polynomial complexity bounds for two interior-point algorithms that use the Mehrotra predictor-corrector approach. In this paper, we study the asymptotic convergence rate for the Mehrotra-type predictor-corrector interior-point algorithms. In particular, we construct an infeasible-interior-point algorithm based on the second algorithm proposed in [18] and show that while retaining a complexity bound ofO(n 1.5 t)-iterations, under certain conditions the algorithm also possesses aQ-subquadratic convergence, i.e., a convergence ofQ-order 2 with an unboundedQ-factor.Research supported in part by NSF DMS-9102761 and DOE DE-FG02-93ER25171.  相似文献   

15.
An interior-point predictor-corrector algorithm for theP *()-matrix linear complementarity problem is proposed. The algorithm is an extension of Mizuno—Todd—Ye's predictor—corrector algorithm for linear programming problem. The extended algorithm is quadratically convergent with iteration complexity . It is the first polynomially and quadratically convergent algorithm for a class of LCPs that are not necessarily monotone.  相似文献   

16.
Recently an infeasible interior-point algorithm for linear programming (LP) was presented by Liu and Sun. By using similar predictor steps, we give a (feasible) predictor-corrector algorithm for convex quadratic programming (QP). We introduce a (scaled) proximity measure and a dynamical forcing factor (centering parameter). The latter is used to force the duality gap to decrease. The algorithm can decrease the duality gap monotonically. Polynomial complexity can be proved and the result coincides with the best one for LP, namely, $O(\sqrt{n}\log n\mu^{0}/\varepsilon)$ .  相似文献   

17.
This work examines the generalization of a certain interior-point method, namely the method of analytic centers, to semi-infinite linear programming problems. We define an analytic center for these problems and an appropriate norm to examine Newton's method for computing this center. A simple algorithm of order zero is constructed and a convergence proof for that algorithm is given. Finally, we describe a more practical implementation of a predictor-corrector method and give some numerical results. In particular we concentrate on practical integration rules that take care of the specific structure of the integrals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号