首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The shape derivative of a functional related to a Bernoulli problem is derived without using the shape derivative of the state. The gradient information is combined with level set ideas in a steepest descent algorithm. Numerical examples show the feasibility of the approach.  相似文献   

2.
The present paper is concerned with investigating the capability of the smoothness preserving fictitious domain method from Mommer (IMA J. Numer. Anal. 26:503–524, 2006) to shape optimization problems. We consider the problem of maximizing the Dirichlet energy functional in the class of all simply connected domains with fixed volume, where the state equation involves an elliptic second order differential operator with non-constant coefficients. Numerical experiments in two dimensions validate that we arrive at a fast and robust algorithm for the solution of the considered class of problems. The proposed method can be applied to three dimensional shape optimization problems.  相似文献   

3.
4.
Potential flow pressure matching is a classical inverse design aerodynamic problem. The resulting loss of regularity during the optimization poses challenges for shape optimization with normal perturbation of the surface mesh nodes. Smoothness is not enforced by the parameterization but by a proper choice of the scalar product based on the shape Hessian, which is derived in local coordinates for starshaped domains. Significant parts of the Hessian are identified and combined with an aerodynamic panel solver. The resulting shape Hessian preconditioner is shown to lead to superior convergence properties of the resulting optimization method. Additionally, preconditioning gives the potential for level independent convergence.  相似文献   

5.
In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini’s condition) is approximated by Nitsche’s method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.  相似文献   

6.
In the present paper we consider the minimization of gradient tracking functionals defined on a compact and fixed subdomain of the domain of interest. The underlying state is assumed to satisfy a Poisson equation with Dirichlet boundary conditions. We proof that, in contrast to the situation of gradient tracking on the whole domain, the shape Hessian is not strictly H 1/2-coercive at the optimal domain which implies ill-posedness of the shape problem under consideration. Shape functional and gradient require only knowledge of the Cauchy data of the state and its adjoint on the boundaries of the domain and the subdomain. These data can be computed by means of boundary integral equations when reformulating the underlying differential equations as transmission problems. Thanks to fast boundary element techniques, we derive an efficient algorithm to solve the problem under consideration.  相似文献   

7.
In this article, we consider a model shape optimization problem. The state variable solves an elliptic equation on a star-shaped domain, where the radius is given via a control function. First, we reformulate the problem on a fixed reference domain, where we focus on the regularity needed to ensure the existence of an optimal solution. Second, we introduce the Lagrangian and use it to show that the optimal solution possesses a higher regularity, which allows for the explicit computation of the derivative of the reduced cost functional as a boundary integral. We finish the article with some second-order optimality conditions.  相似文献   

8.
In the current work, we consider the inverse conductivity problem of recovering inclusion with one measurement. First, we use conformal mapping techniques for determining the location of the anomaly and estimating its size. We then get a good initial guess for quasi-Newton type method. The inverse problem is treated from the shape optimization point of view. We give a rigorous proof for the existence of the derivative of the state function and of shape functionals. We consider both least squares fitting and Kohn and Vogelius functionals. For the numerical implementation, we use a parameterization of shapes coupled with a boundary element method. Several numerical examples indicate the superiority of the Kohn and Vogelius functional over least squares fitting.  相似文献   

9.
The dynamic Maxwell equations with a strictly dissipative boundary condition is considered. Sharp trace regularity for the electric and the magnetic field are established for both: weak and differentiable solutions. As an application a shape optimization problem for Maxwell's equations is considered. In order to characterize the shape derivative as a solution to a boundary value problem, the aforementioned sharp regularity of the boundary traces is critical.  相似文献   

10.
We describe an approach for measuring 2D shape-of-object dissimilarity. The shape of the different objects to be compared is mapped to a representation invariant under translation, rotation, and area. Thus, the shapes will have the same amount of information to describe them (equal number of pixels). The measure of dissimilarity is based on the transformation of one shape into another. This transformation is performed by moving pixels. Thus, the shape difference could be ascertained by counting how many pixels we have to move and how far to change one shape into another. When the shape transformation is performed, the distribution of the shape difference is computed, which permits an improvement in shape comparison.  相似文献   

11.
This work deals with a free boundary identification problem in a steady viscoplastic flow. We provide a novel identification model based on a non-linear optimization. The fluid motion is governed by the incompressible Norton–Hoff model coupled with the heat equation. The viscosity of the fluid is modeled by the non-linear Arrhenius law. Our point of view is to treat the problem as a shape sensitivity of a cost functional formulated on the free boundary and governed by the normal component of the velocity of the flow. We analyze the mathematical statement of the forward problem. The equations related to the free boundary are simplified. Various properties of this optimization are proved. Since the state of Norton–Hoff model is not regular enough we introduce a parameter penalization. The shape gradient of the considered cost functional is given in the strong sense up to the parameter of penalization. We supply the expression of the shape gradient in a weak sense.  相似文献   

12.
In this paper, we propose an imaging technique for the detection of porous inclusions in a stationary flow governed by Stokes–Brinkmann equations. We introduce the velocity method to perform the shape deformation, and derive the structure of shape gradient for the cost functional based on the continuous adjoint method and the function space parametrization technique. Moreover, we present a gradient-type algorithm to the shape inverse problem. The numerical results demonstrate the proposed algorithm is feasible and effective for the quite high Reynolds numbers problems.  相似文献   

13.
This paper presents an efficient methodology to find the optimum shape of arch dams. In order to create the geometry of arch dams a new algorithm based on Hermit Splines is proposed. A finite element based shape sensitivity analysis for design-dependent loadings involving body force, hydrostatic pressure and earthquake loadings is implemented. The sensitivity analysis is performed using the concept of mesh design velocity. In order to consider the practical requirements in the optimization model such as construction stages, many geometrical and behavioral constrains are included in the model in comparison with previous researches. The optimization problem is solved via the sequential quadratic programming (SQP) method. The proposed methods are applied successfully to an Iranian arch dam, and good results are achieved. By using such methodology, efficient software for shape optimization of concrete arch dams for practical and reliable design now is available.  相似文献   

14.
An adaptive mesh method combined with the optimality criteria algorithm is applied to optimal shape design problems of fluid dynamics. The shape sensitivity analysis of the cost functional is derived. The optimization problem is solved by a simple but robust optimality criteria algorithm, and an automatic local adaptive mesh refinement method is proposed. The mesh adaptation, with an indicator based on the material distribution information, is itself shown as a shape or topology optimization problem. Taking advantages of this algorithm, the optimal shape design problem concerning fluid flow can be solved with higher resolution of the interface and a minimum of additional expense. Details on the optimization procedure are provided. Numerical results for two benchmark topology optimization problems are provided and compared with those obtained by other methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The Boussinesq approximation to the Fourier-Navier-Stokes (F-N-S) flows under the electromagnetic field is considered. Such a model is the so-called Maxwell-Boussinesq approximation. We propose a new approach to the problem. We prove the existence and uniqueness of weak solutions to the variational formulation of the model. Some further regularity in W1,2+δ, δ>0, is obtained for the weak solutions. The shape sensitivity analysis by the boundary variations technique is performed for the weak solutions. As a result, the existence of the strong material derivatives for the weak solutions of the problem is shown. The result can be used to establish the shape differentiability for a broad class of shape functionals for the models of Fourier-Navier-Stokes flows under the electromagnetic field.  相似文献   

16.
The aim of this paper is to propose a variational piecewise constant level set method for solving elliptic shape and topology optimization problems. The original model is approximated by a two-phase optimal shape design problem by the ersatz material approach. Under the piecewise constant level set framework, we first reformulate the two-phase design problem to be a new constrained optimization problem with respect to the piecewise constant level set function. Then we solve it by the projection Lagrangian method. A gradient-type iterative algorithm is presented. Comparisons between our numerical results and those obtained by level set approaches show the effectiveness, accuracy and efficiency of our algorithm.  相似文献   

17.
This paper deals with the shape reconstruction of a viscous incompressible fluid driven by the Stokes flow. For the approximate solution of the ill-posed and nonlinear problem we propose a regularized Newton method. A theoretical foundation for the Newton method is given by establishing the differentiability of the initial boundary value problem with respect to the interior boundary curve in the sense of a domain derivative. The numerical examples show that our theory is useful for practical purpose and the proposed algorithm is feasible.  相似文献   

18.
In this paper, a shape optimization problem, modelling a welding process, governed by a second order non coercive PDE is considered. The well posedness of the shape optimal design problem is showed using the degree of Leray–Schauder. Then the existence of an optimal solution is proved.  相似文献   

19.
We present an analytical treatment of the shape optimization problem that arises in the study of electron bubbles. The problem is to minimize a weighted sum of a Laplace eigenvalue, volume, and surface area with respect to the shape of the domain. The analysis employs the calculus of moving surfaces and yields surprising conclusions regarding the stability of equilibrium spherical configurations. Namely, all but the lowest eigenvalue result in unstable configurations and certain combinations of parameters, near-spherical equilibrium stable configurations exist. Two-dimensional and three-dimensional problems are considered and numerical results are presented for the two-dimensional case.  相似文献   

20.
This contribution combines a shape optimization approach to free boundary value problems of Bernoulli type with an embedding domain technique. A theoretical framework is developed which allows to prove continuous dependence of the primal and dual variables in the resulting saddle point problems with respect to the domain. This ensures the existence of a solution of a related shape optimization problem in a sufficiently large class of admissible domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号