首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
This paper concerns the study of the Bell polynomials and the binomial type sequences. We mainly establish some relations tied to these important concepts. Furthermore, these obtained results are exploited to deduce some interesting relations concerning the Bell polynomials which enable us to obtain some new identities for the Bell polynomials. Our results are illustrated by some comprehensive examples.  相似文献   

2.
In this paper, the concepts and the formalism associated with monomiality principle and Sheffer sequences are used to introduce family of Hermite-based Sheffer polynomials. Some properties of Hermite-Sheffer polynomials are considered. Further, an operational formalism providing a correspondence between Sheffer and Hermite-Sheffer polynomials is developed. Furthermore, this correspondence is used to derive several new identities and results for members of Hermite-Sheffer family.  相似文献   

3.
Using the exponential generating function and the Bell polynomials, we obtain several new identities for the binomial sequences. As applications, some interesting identities are established for the Abel polynomials, exponential polynomials and factorial powers.  相似文献   

4.
A relationship between a pair of Laurent series and Riordan arrays is formulated. In addition, a type of generalized Sheffer groups is defined by using Riordan arrays with respect to power series with non-zero coefficients. The isomorphism between a generalized Sheffer group and the group of the Riordan arrays associated with Laurent series is established. Furthermore, Appell, associated, Bell, and hitting-time subgroups of the groups are defined and discussed. A relationship between the generalized Sheffer groups with respect to different type of power series is presented. The equivalence of the defined Riordan array pairs and generalized Stirling number pairs is given. A type of inverse relations of various series is constructed by using pairs of Riordan arrays. Finally, several applications involving various arrays, polynomial sequences, special formulas and identities are also presented as illustrative examples.  相似文献   

5.
By employing certain operational methods, the authors introduce Hermite-based Appell polynomials. Some properties of Hermite-Appell polynomials are considered, which proved to be useful for the derivation of identities involving these polynomials. The possibility of extending this technique to introduce Hermite-based Sheffer polynomials (for example, Hermite-Laguerre and Hermite-Sister Celine's polynomials) is also investigated.  相似文献   

6.
The aim of this paper is to study on the Genocchi polynomials of higher order on P, the algebra of polynomials in the single variable x over the field C of characteristic zero and P, the vector spaces of all linear functional on P. By using the action of a linear functional L on a polynomial p(x) Sheffer sequences and Appell sequences, we obtain some fundamental properties of the Genocchi polynomials. Furthermore, we give relations between, the first and second kind Stirling numbers, Euler polynomials of higher order and Genocchi polynomials of higher order.  相似文献   

7.
We revisit the theory of Sheffer sequences by means of the formalism introduced in Rota and Taylor (SIAM J Math Anal 25(2):694?C711, 1994) and developed in Di Nardo and Senato (Umbral nature of the Poisson random variables. Algebraic combinatorics and computer science, pp 245?C256, Springer Italia, Milan, 2001, European J Combin 27(3):394?C413, 2006). The advantage of this approach is twofold. First, this new syntax allows us noteworthy computational simplification and conceptual clarification in several topics involving Sheffer sequences, most of the open questions proposed in Taylor (Comput Math Appl 41:1085?C1098, 2001) finds answer. Second, most of the results presented can be easily implemented in a symbolic language. To get a general idea of the effectiveness of this symbolic approach, we provide a formula linking connection constants and Riordan arrays via generalized Bell polynomials, here defined. Moreover, this link allows us to smooth out many results involving Bell Polynomials and Lagrange inversion formula.  相似文献   

8.
We discuss closed-form formulas for the (n, k)th partial Bell polynomials derived in Cvijovi? (Appl Math Lett 24:1544–1547, 2011). We show that partial Bell polynomials are special cases of weighted integer compositions, and demonstrate how the identities for partial Bell polynomials easily follow from more general identities for weighted integer compositions. We also provide short and elegant probabilistic proofs of the latter, in terms of sums of discrete integer-valued random variables. Finally, we outline further identities for the partial Bell polynomials.  相似文献   

9.
We discuss some outcomes of an umbral generalization of the Abel identity. First we prove that a concise proof of the Lagrange inversion formula can be deduced from it. Second, we show that the whole class of Sheffer sequences, if manipulated to an umbral level, coincides with the subclass of Abel polynomials. Finally, we apply these techniques to obtain explicit formulae for some classical polynomial sequences, even in non Sheffer cases (Chebyshev and Gegenbauer polynomials).  相似文献   

10.
In this short note, we focus on self-inverse Sheffer sequences and involutions in the Riordan group. We translate the results of Brown and Kuczma on self-inverse sequences of Sheffer polynomials to describe all involutions in the Riordan group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号