首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
关于迭代函数方程f2(x)=af(x)+bx的通解   总被引:2,自引:0,他引:2  
设λ的二次三项式λ2-aλ-b的两个零点为λ1=r,λ2=s(a及b为实数).对0<r<s,r<0<s≠-r及r=s≠0这三种情形,J.Matkowski与Weinian Zhang在“Method of characteristics for functional equations in polynomial form”一文中给出了迭代函数方程f2(x)=af(x)+bx,对任x∈R;f∈C0  相似文献   

2.
本文讨论了积流形的P-形式上Laplace算子谱的唯一性问题,在紧Kachler流形乘积和紧Sasaki流形乘积的两类积流形中,CP×CP和S2n+1(1)×S2n+1(1)是P-形式上Laplacce算子谱特征。  相似文献   

3.
本文讨论了一般的正则泛函:F(u;Ω)=∫Ωf(x,u,Du)dx的局部W-极小的C1,α正则性.获得了处理W-极小u的H?lder连续的指数估计.  相似文献   

4.
张恭庆 《中国科学A辑》1983,26(4):306-317
本文是把临界点理论与上、下解方法结合起来的一种尝试,研究了一类二阶半线性椭圆边值问题。在适当条件下,设它有一对上、下解,又设它对应的泛函J在H01(Ω)上满足Palais smale条件。如果J还是下方无界的,那么J至少有两个不同的临界点。  相似文献   

5.
本文讨论了球上半线性椭圆Dirichlet问题Δu+λu+up=0正解的存在性,其中,λ∈R,0〈q〈1,p〉p≡(N+2)/(N-2)(N〉2).在条件N≤6或N〉6,p〈p≡(N+1-(2N-3)1/2)/(N-3-(2N-3)1/2)下,证明了存在唯一的λ00〉0,当λ=λ0时,有唯一的径向奇异解及无穷多个正解。  相似文献   

6.
三角域上Bernstein多项式的Lipschitz常数   总被引:1,自引:0,他引:1  
设T是平面上以T1,T2,T3为顶点的三角形,f(p)为定义在T上的函数,称Bn(f,P):=(?)f(i/n,j/n,k/n)Bi,j,kn(P),为f的n次Bernstein多项式,这儿Bi,j,kn(P):(n!)/(i!j!k!)uivjωk是Bernstein基函数,(u,v,w)是P关于T的重心坐标。 B.M.Brown等人对单变量的Bernstein多项式证明了如果f∈LipAλ,0<λ≤1,则对所有的n,都有Bα(f,x)∈LipAλ。本文的目的是对定义在三角域T:{(x,y):x≥0,y≥0,x+y≤1}上的Bernstein多项式证明了类似的结果: 设f(P)∈LipAλ,0<λ≤1,则对所有的n,Bn(f,P)∈Lip(21/2λA)λ,并且,在一定意义上,常数21/2λA是最好的。 上述结果对于任意的锐角或直角三角形T,也是成立的。 最后还指出,当T可为钝角三角形时,则不存在同一常数C,使对所有的n和任意三角形T,有Bn(f,P)∈Lipcλ。  相似文献   

7.
本文讨论了超空间2x的某些局部覆盖性质,并给出下面二个结果:定理1设X是T2空间,则2x紧当且仅当2x是局部meta-Lindelof空间.定理21设X是T1空间,则2xm-紧当且仅当2x是局部m-紧。  相似文献   

8.
极小子流形上Laplace算子的谱   总被引:2,自引:0,他引:2  
本文讨论了Sn+p(1)(或CPn+1)中极小子流形上Laplace算子的谱,证明了Sn+p(1)中全测地极小子流形(或CPn+1中Kachler超曲面)是由作用在q-形式上的Laplace算子的谱唯一确定.  相似文献   

9.
本文给出了基于xL(a)n-1(x)之零点的(0,1,…,m-2,m)插值的正则性的充要条件,其中xL(a)n-1(x)为(n-1)次Laguerre多项式。同时基函数(若存在的话)的明显表达式也在文中给出。再者,还证明了,若该插值问题有无穷多个解,则其解的一般形式为f0(x)+Cf1(x)这里C为任意常数。  相似文献   

10.
关于一类S1,13(△(2)mn)插值与逼近   总被引:2,自引:1,他引:1  
设△(2)mn是矩形域D=[a,b](?)[c,d]的Ⅱ-型三角剖分.S1,13(△(2)mn)是带边界条件的二元三次样条空间:本文我们将讨论一类S1,13(△(2)mn)的插值问题,证明了它的存在性,唯一性及逼近阶:如果f∈C(D),则有|f-s|≤k(l)·ma  相似文献   

11.
This paper deals with Lipschitz selections of set-valued maps with closed graphs. First, we characterize Lipschitzianity of a closed set-valued map in the differential games framework in terms of a discriminating property of its graph. This allows us to consider the -Lipschitz kernel of a given set-valued map as the largest -Lipschitz closed set-valued map contained in the initial one, to derive an algorithm to compute the collection of Lipschitz selections, and to extend the Pasch–Hausdorff envelope to set-valued maps.  相似文献   

12.
彭济根 《数学学报》2004,47(4):723-730
本文通过引入若干Lipschitz对偶概念,将非线性Lipschitz算子半群对偶映射到Lipschitz对偶空间中,使其转化为线性算子半群。该线性算子半群被证明是一个C_0~*-半群,因而是某个C_0-半群的对偶半群。从而证明了,在等距意义下,一个非线性Lipschitz算子半群可以延拓为一个C_0-半群。基于这些结论,本文给出了一系列全新的非线性Lipschitz算子半群的表示公式。  相似文献   

13.
Banach空间的Lipschitz对偶及其应用   总被引:3,自引:0,他引:3  
本文引进Banach空间E的一个全新对偶空间概念—Lipschitz对偶空间,并证明:任何Banach空间的Lipschitz对偶空间是某个包含E的Banach空间的线性对偶空间,以所引进的新对偶空间为框架,本文定义了非线性Lipschitz算子的Lipshitz对偶算子,证明:任何非线性Lipschitz算子的Lipschitz对偶算子是有界线性算子.所获结果为推广线性算子理论到非线性情形(特别,运用线性算子理论研究非线性算子的特性)开辟了一条新的途径.作为例证,我们应用所建立的理论证明了若干新的非线性一致Lipschitz映象遍历收敛性定理.  相似文献   

14.
Summary A real valued function <InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"6"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"7"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"8"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"9"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"10"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"11"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"12"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"13"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"14"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"15"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"16"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"17"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"18"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"19"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"20"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"21"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"22"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"23"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"24"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"25"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"26"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"27"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"28"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"29"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"30"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"31"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"32"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"33"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"34"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>f$ defined on a real interval $I$ is called \emph{$d$-Lipschitz} if it satisfies $|\ell(x)- \ell(y)| \le d(x,y)$ for $x,y\in I$. In this paper, we investigate when a function $p\: I \to \bR$ can be decomposed in the form $p=q+ \ell$, where $q$ is increasing and $\ell$ is $d$-Lipschitz. In the general case when $d\: I^{2} \to \bR$ is an arbitrary semimetric, a function $p\: I \to \bR$ can be written in the form $p=q+ \ell$ if and only if \vspace{-4pt} <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[$$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation> \sum_{i=1}^{n}{\big(p(s_{i})-p(t_{i})-d(t_{i},s_{i}) \big)^{+}} \le \sum_{j=1}^{m}{\big(p(v_{j})-p(u_{j})+d(u_{j},v_{j}) \big)} \vspace{-4pt} $$ is fulfilled for all real numbers $t_{1}<s_{1}, \dots, t_{n}<s_{n}$ and $u_{1}<v_{1}, \dots, u_{m}<v_{m}$ in $I$ satisfying the condition \vspace{-4pt} $$ \sum_{i=1}^{n} 1_{\left]t_i,s_i\right]}= \sum_{j=1}^{m} 1_{\left]u_j,v_j\right]}, \vspace{-4pt} $$ where $1_{\left]a,b\right]}$ denotes the characteristic function of the interval $\left]a,b\right]$. In the particular case when $d\: I^{2} \to R$ is a so-called concave semimetric, a function $p\: I \to \bR$ is of the form $p=q+ \ell$ if and only if \vspace{-4pt} $$ 0 \le \sum_{k=1}^{n}{d(x_{2k-1},x_{2k})} + d(x_0,x_{2n+1}) + \sum_{k=0}^{n}{\big(p(x_{2k+1})-p(x_{2k})\big)} \vspace{-4pt} $$ holds for all $x_0\le x_1\ki \cdots\ki x_{2n}\le x_{2n+1}$ in $I$.  相似文献   

15.
本文研究如下形式的无穷维空间的倒向半线性随机发展方程在系数f(t,x,y,),g(t,x)满足一类非Lipschitz条件下得到了方程局部与整体适应解的存在唯-性.  相似文献   

16.
We give the first constructive example of a Lipschitz mapping with positive minimal displacement in an infinite-dimensional Hilbert space We use this construction to obtain an evaluation from below of the minimal displacement characteristic in the space In the second part we present a simple and constructive proof of existence of a Lipschitz retraction from a unit ball onto a unit sphere in the space , and we improve an evaluation from above of a retraction constant

  相似文献   


17.
If X is any separable Banach space containing l1, then there is a Lipschitz quotient map from X onto any separable Banach space Y.  相似文献   

18.
非交换Lipschitz-φ算子代数   总被引:4,自引:0,他引:4  
曹怀信  徐宗本 《数学学报》2004,47(3):433-440
本文引入由紧距离空间(K,d)到给定Banach代数A中的Lipschitz-φ算子构成的非交换Banach代数L~φ(K,A)与l~φ(K,A),证明了它们都是由K到A的全体连续算子构成的非交换Banach代数C(K,A)的子代数,并且关于范数||f||φ=L_φ(f)+||f||∞是Banach代数,研究了不同 Lipschitz尺度函数φ对应的大(小)Lipschitz代数之间的关系。特别当φ(t)=t~α时,引入了极限代数lim_(α→0+)l~α(K,A),lim_(α→+∞)l~α(K,A),lim_(α→0+)L~α(K,A)与lim_(α→+∞)L~α(K,A)以及距离空间的Lipschitz连通性,得到了lim_(α→+∞)l~α(K,A)=A的充要条件,也给出了lim_(α→0+)L~α(K,A)=C(K,A)的条件。  相似文献   

19.
We study the numerical radius of Lipschitz operators on Banach spaces via the Lipschitz numerical index, which is an analogue of the numerical index in Banach space theory. We give a characterization of the numerical radius and obtain a necessary and sufficient condition for Banach spaces to have Lipschitz numerical index 1. As an application, we show that real lush spaces and C  -rich subspaces have Lipschitz numerical index 1. Moreover, using the Gâteaux differentiability of Lipschitz operators, we characterize the Lipschitz numerical index of separable Banach spaces with the RNP. Finally, we prove that the Lipschitz numerical index has the stability properties for the c0c0-, l1l1-, and ll-sums of spaces and vector-valued function spaces. From this, we show that the C(K)C(K) spaces, L1(μ)L1(μ)-spaces and L(ν)L(ν)-spaces have Lipschitz numerical index 1.  相似文献   

20.
LIPSCHITZSTABILITYOFGENERALCONTROLSYSTEMSJinCan(金淦)(ZhongshanUniversity,中山大学,邮编:510275)Abstract:Necessaryandsufficientconditi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号