首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.IntroductionWeconsiderahomogeneousisotropicandlinearelasticKirchhoffplateunderlateralloaddistributedovertheplatefix[--t,t].ThedomainfiERZisboundedwiththesmoothboundaryr.Inthestaticequilibrium,weconsiderthefreetypeboundaryconditiononr.Thenthedeflectionusatisfiesthefollowingproblem:whereD~--E0h'.12(1--ac,isthebendingstiffnessoftheplatewithhbeingtheplatethicknessandEOandu(0相似文献   

2.
In this work, we deal with the numerical study of the new approximation method proposed in [7] for a transient flow problem in porous media. The stationary problem, obtained from a time discretization of this transient problem, is considered as an optimal shape design formulation. We prove the existence of the solution of the discrete optimal shape problem obtained from finite element discretization. We study the convergence and give numerical results showing the efficiency of the proposed approach.  相似文献   

3.
In this paper, an extremal eigenvalue problem to the Sturm-Liouville equations with discontinuous coefficients and volume constraint is investigated. Liouville transformation is applied to change the problem into an equivalent minimization problem. Finite element method is proposed and the convergence for the finite element solution is established. A monotonic decreasing algorithm is presented to solve the extremal eigenvalue problem. A global convergence for the algorithm in the continuous case is proved. A few numerical results are given to depict the efficiency of the method.  相似文献   

4.
Summary A fully discrete finite element method for the Cahn-Hilliard equation with a logarithmic free energy based on the backward Euler method is analysed. Existence and uniqueness of the numerical solution and its convergence to the solution of the continuous problem are proved. Two iterative schemes to solve the resulting algebraic problem are proposed and some numerical results in one space dimension are presented.  相似文献   

5.
In this paper, we mainly study a numerical differentiation problem which aims to approximate the second order derivative of a single variable function from its noise data. By transforming the problem into a combination of direct and inverse problems of partial differential equations (heat conduction equations), a new method that we call the PDEs-based numerical differentiation method is proposed. By means of the finite element method and the Tikhonov regularization, implementations of the proposed PDEs-based method are presented with a posterior strategy for choosing regularization parameters. Numerical results show that the PDEs-based numerical differentiation method is highly feasible and stable with respect to data noise.  相似文献   

6.
A Legendre spectral element/Laguerre coupled method is proposed to numerically solve the elliptic Helmholtz problem on the half line. Rigorous analysis is carried out to establish the convergence of the method. Several numerical examples are provided to confirm the theoretical results. The advantage of this method is demonstrated by a numerical comparison with the pure Laguerre method.  相似文献   

7.
A finite elernent methodology is developed for the numerical solution of traffic flow problems encountered in arterial streets. The simple continuum traffic flow model consisting of the equation of continuity and an equilibrium flow-density relationship is adopted. A Galerkin type finite element method is used to formulate the problem in discrete form and the solution is obtained by a step-by-step time integration in conjunction with the Newton-Raphson method. The proposed finite element methodology, which is of the shock capturing type, is applied to flow traffic problems. Two numerical examples illustrate the method and demonstrate its advantages over other analytical or numerical techniques.  相似文献   

8.
In this paper, the Crank-Nicolson/Newton scheme for solving numerically secondorder nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nicolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete CrankNicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.  相似文献   

9.
A complex variable boundary element method is proposed for solving numerically the axisymmetric steady-state problem of heat conduction in a nonhomogeneous isotropic solid. To assess the validity and the accuracy of the method, it is applied to solve specific cases of the problem. The numerical solutions obtained agree well with known solutions.  相似文献   

10.
In this article, we propose a multiphysics mixed finite element method with Nitsche's technique for Stokes-poroelasticity problem. Firstly, we reformulate the poroelasticity part of the original problem by introducing two pseudo-pressures to into a “fluid–fluid” coupled problem so that we can use the classical stable finite element pairs to deal with this problem conveniently. Then, we prove the existence and uniqueness of weak solution of the reformulated problem. And we use Nitsche's technique to approximate the coupling condition at the interface to propose a loosely-coupled time-stepping method to solve three subproblems at each time step–a Stokes problem, a generalized Stokes problem and a mixed diffusion problem. And the proposed method does not require any restriction on the choice of the discrete approximation spaces on each side of the interface provided that appropriate quadrature methods are adopted. Also, we give the stability analysis and error estimates of the loosely-coupled time-stepping method. Finally, we give the numerical tests to show that the proposed numerical method has a good stability and no “locking” phenomenon.  相似文献   

11.
基于无网格自然单元法,建立了求解二维黏弹性力学问题的一条新途径.基于弹性 黏弹性对应原理和Laplace(拉普拉斯)变换技术,首先将黏弹性问题转换成Laplace域内与弹性力学问题相同的形式,然后推导出基于自然单元法分析黏弹性问题的基本公式.作为一种新兴的无网格数值计算方法,自然单元法的实质是一种基于自然邻近插值的Galerkin(伽辽金)法.相对于其他无网格法,自然单元法的形函数具有插值性和支持域各向异性等特点.算例结果证明了所提分析方法的有效性.  相似文献   

12.
The present paper is devoted to solve the problem of identifying an unknown heat source depending simultaneously on both space and time variables. This problem is transformed into an optimization problem and the uniqueness of minimum element is proved rigorously. Then a variational formulation for solving the optimization problem is given. A conjugate gradient method and a finite difference method are used to solve the variational problem. Some numerical examples are also provided to show the efficiency of the proposed method.  相似文献   

13.
This work is concerned with the study of a one-dimensional dynamic contact problem arising in thermoviscoelasticity with two temperatures. The existence and uniqueness of a solution to the continuous problem is established using the Faedo–Galerkin method. A finite element approximation is proposed, a convergence result given and some numerical simulations described.  相似文献   

14.
In this initial study, we propose a numerical method for identifying multiple leak zones in a saturated unsteady flow. Using the conventional saturated groundwater flow equation, the leak identification problem is modeled as a Cauchy problem for the heat equation and the aim is to find the regions on the boundary of the solution domain where the solution vanishes because the leak zones correspond to null pressure values. This problem is ill-posed and to reconstruct the solution in a stable way, we modify it and employ a previously proposed iterative regularizing method. In this method, mixed well-posed problems obtained by changing the boundary conditions are solved for the heat operator as well as for its adjoint to obtain a sequence of approximations to the original Cauchy problem. The mixed problems are solved using a finite element method and the numerical results indicate that the leak zones can be identified with the proposed method.  相似文献   

15.
A uniform quadratic b-spline isogeometric element is exclusively considered for wave propagation problem with the use of desirable implicit time integration scheme. A generalized numerical algorithm is proposed for dispersion analysis of one-dimensional (1-D) and two-dimensional (2-D) wave propagation problems where the quantified influence of the defined CFL number on wave velocity error is analyzed and obtained. Meanwhile, the optimal CFL (Courant–Friedrichs–Lewy) number for the proposed 1-D and 2-D problems is suggested. Four representative numerical simulations confirm the effectiveness of the proposed method and the correctness of dispersion analysis when appropriate spatial element size and time increment are adopted. The desirable computation efficiency of the proposed isogeometric method was confirmed by conducting time cost and calculation accuracy analysis of a 2-D numerical example where the referred FEM was also tested for comparison.  相似文献   

16.
Two Morley-Wang-Xu element methods with penalty for the fourth order elliptic singular perturbation problem are proposed in this paper, including the interior penalty Morley-Wang-Xu element method and the super penalty Morley-Wang-Xu element method. The key idea in designing these two methods is combining the Morley-Wang-Xu element and penalty formulation for the Laplace operator. Robust a priori error estimates are derived under minimal regularity assumptions on the exact solution by means of some established a posteriori error estimates. Finally, we present some numerical results to demonstrate the theoretical estimates.  相似文献   

17.
This paper deals with the numerical simulation of the steady state two dimensional window Josephson junctions by finite element method. The model is represented by a sine-Gordon type composite PDE problem. Convergence and error analysis of the finite element approximation for this semilinear problem are presented. An efficient and reliable Newton-preconditioned conjugate gradient algorithm is proposed to solve the resulting nonlinear discrete system. Regular solution branches are computed using a simple continuation scheme. Numerical results associated with interesting physical phenomena are reported. Interface relaxation methods, which by taking advantage of special properties of the composite PDE, can further reduce the overall computational cost are proposed. The implementation and the associated numerical experiments of a particular interface relaxation scheme are also presented and discussed.  相似文献   

18.
This paper presents a numerical approach for modeling multiple crack fatigue growth in a plane elastic infinite plate. It involves a generation of Bueckner’s principle, a displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author and an extension of Paris’ law to a multiple crack problem under mixed-mode loading. Because of an intrinsic feature of the boundary element method, a general multiple crack growth problem can be solved in a single-region formulation. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not necessary. Crack extension is conveniently modeled by adding new boundary elements on the incremental crack extension to the previous crack boundaries. Fatigue growth modeling of an inclined crack in an infinite plate under biaxial cyclic loads is taken into account to illustrate the effectiveness of the present numerical approach. As an example, the present numerical approach is used to study the fatigue growth of three parallel cracks with same length under uniaxial cyclic load. Many numerical results are given.  相似文献   

19.
In this paper, based on a two-grid method and a recent local and parallel finite element method, a parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem is proposed and analyzed. This method ensures that all the local subproblems on the fine grid can be solved in parallel. Optimal error bounds of the approximate solution are obtained. Finally, numerical experiments are presented to demonstrate the accuracy and effectiveness of the proposed method.  相似文献   

20.
In this paper, a new multilevel correction scheme is proposed to solve Stokes eigenvalue problems by the finite element method. This new scheme contains a series of correction steps, and the accuracy of eigenpair approximation can be improved after each step. In each correction step, we only need to solve a Stokes problem on the corresponding fine finite element space and a Stokes eigenvalue problem on the coarsest finite element space. This correction scheme can improve the efficiency of solving Stokes eigenvalue problems by the finite element method. As applications of this multilevel correction method, a multigrid method and an adaptive finite element technique are introduced for Stokes eigenvalue problems. Some numerical results are given to validate our schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号