首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
本文讨论下面一类分数阶微分方程多点边值问题 $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$其中$3<\alpha \leq 4$是一个实数.通过应用Mawhin重合度理论和构建适当的算子,得到了该边值问题解的存在性结果.  相似文献   

2.
该文首先研究具有脉冲的线性Dirichlet边值问题 $\left\{ \begin{array}{ll} x'(t)+a(t)x(t)=0, t\neq \tau_{k}, \ \Delta x(\tau_{k})=c_{k}x(\tau_{k}),\ \Delta x'(\tau_{k})=d_{k}x(\tau_{k}), \ x(0)=x(T)=0, \end{array} \right. (k=1,2\cdots,m) $ 给出该Dirichlet边值问题仅有零解的两个充分条件, 其中$a:[0,T]\rightarrow R$, $c_{k}, d_{k}, k=1,2,$ $\cdots,m$是常数, 该文首先研究具有脉冲的线性Dirichlet边值问题 $$\left\{ \begin{array}{ll} x'(t)+a(t)x(t)=0, t\neq \tau_{k}, \ \Delta x(\tau_{k})=c_{k}x(\tau_{k}),\ \Delta x'(\tau_{k})=d_{k}x(\tau_{k}), \ x(0)=x(T)=0, \end{array} \right. (k=1,2\cdots,m) $$ 给出该Dirichlet边值问题仅有零解的两个充分条件, 其中$a:[0,T]\rightarrow R$, $c_{k}, d_{k}, k=1,2,$ $\cdots,m$是常数, $0<\tau_{1}<\tau_{2}\cdots<\tau_{m}<T$为脉冲时刻. 其次利用上面的线性边值问题仅有零解这个性质和Leray-Schauder度理论, 研究具有脉冲的非线性Dirichlet边值问题 $$\left\{ \begin{array}{ll} x'(t)+f(t,x(t))=0, t\neq \tau_{k}, \ \Delta x(\tau_{k})=I_{k}(x(\tau_{k})), \ \Delta x'(\tau_{k})=M_{k}(x(\tau_{k})), \ x(0)=x(T)=0 \end{array} \right. (k=1,2\cdots,m) $$ 解的存在性和唯一性, 其中 $f\in C([0,T]\times R,R)$, $I_{k},M_{k}\in C(R, R),k=1,2,\cdots,m$. 该文主要定理的一个推论将经典的Lyaponov不等式比较完美地推广到脉冲系统.  相似文献   

3.
在任意实的Banach空间中研究了用具误差的修正的Ishikawa与Mann迭代程序来逼近一致L-Lipschitz的渐近伪压缩映象不动点的强收敛性问题,在去掉条件$$\sum\limits_{n=0}^{\infty}\alpha_{n}^{2}<\infty, \q \sum\limits_{n=0}^{\infty }\gamma_{n}<\infty,\q \sum\limits_{n=0}^{\infty }\alpha_{n}(\beta_{n}+\delta_{n})<\infty,\q \sum\limits_{n=0}^{\infty}\alpha_{n}(k_{n}-1)<\infty$$之下,证明了相关文献的结果仍然成立.所得结果不但改进和推广了最近一些人的最新结果,而且也从根本上改进了定理的证明方法.  相似文献   

4.
设$\Gamma$ 是一个直径$d\geq 3$的非二部距离正则图,其特征值 $\theta_{0}>\theta_{1}>\cdots>\theta_{d}.$ 设$\theta_{1'}\in\{ \theta_{1},\theta_{d}\}, $\theta_{d'}$ 是$\theta_{1'}$ 在 $\{\theta_{1},\theta_{d}\}$中的余. 又设 $\Gamma$ 是具有性质$E_{1}\circ E_{d}=|X|^{-1}(q^{d-1}_{1d}E_{d-1}+q^{d}_{1d}E_{d})$的$E_{1}\circ E_{d}$型距离正则图,$\sigma_{0},\sigma_{1},\cdots,\sigma_{d}$,$\rho_{0},\rho_{1},\cdots,\rho_{d}$和$\beta_{0},\beta_{1},\cdots,\beta_{d}$ 分别是关于$\theta_{1'}$,$\theta_{d'}$ 和 $\theta_{d-1}$的余弦序列.利用上述余弦序列,给出了 $\Gamma$关于 $\theta_{1}$ 或$\theta_{d}$是$Q$ -多项式的充要条件.  相似文献   

5.
刘名生  朱玉灿 《中国科学A辑》2007,37(10):1193-1206
在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在$\C^n$中的有界完全Reinhardt域$\Omega$上推广的Roper-Suffridge算子$\Phi(f)$定义为 \begin{eqnarray*} \Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)(z)\!=\!\Big(rf\Big(\frac{z_1}{r}\Big), \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_2}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_2}z_2,\ldots, \Big(\frac{rf(\frac{z_1}{r})}{z_1}\Big)^{\beta_n}\Big(f’\Big(\frac{z_1}{r}\Big)\Big)^{\gamma_n}z_n \Big), \end{eqnarray*} 其中 $n\geq2$, $(z_1, z_2,\ldots, z_n)\in \Omega$, $r=r(\Omega)=\sup\{|z_1|: (z_1, z_2,\ldots, z_n)\in \Omega\}, 0\leq \gamma_j\leq 1-\beta_j, 0\leq \beta_j\leq 1$, 这里选取幂函数的单值解析分支, 使得 $(\frac{f(z_1)}{z_1})^{\beta_j}|_{z_1=0}= 1$ 和 $(f’(z_1))^{\gamma_j}|_{z_1=0}=1, j=2,\ldots, n$. 证明了 $\Omega$上的算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 是将 $S^*_\alpha(U)$ 的子集映入$S^*_\alpha\,(\Omega)\,(0\leq \alpha<1)$, 且对于一些合适的常数 $\beta_j, \gamma_j, p_j$, $D_p$上的这个算子 $\Phi^r_{n,\beta_2, \gamma_2,\ldots, \beta_n, \gamma_n}(f)$ 保持$\alpha$阶星形性或保持$\beta$ 型螺形性, 其中 $ D_p=\bigg\{(z_1, z_2,\ldots, z_n)\in \C^n: \he{j=1}{n}|z_j|^{p_j}<1\bigg\},\quad p_j>0, j=1, 2,\ldots, n, $ $U$是复平面$\C$上的单位圆, $S^*_\alpha(\Omega)$ 是 $\Omega$ 上所有正规化$\alpha$阶星形映射所成的类. 也得到: 对于某些合适的常数 $\beta_j, \gamma_j, p_j$ 和 在C~n中的有界完全Reinhardt域Ω上推广的Roper-Suffridge算子Φ(f)定义为Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)(z)=(rf(z_1/r),((rf(z_1/r))/z_1)~(β_2)(f′(z_1/r))~γ_2_(z_2,…,)((rf(z_1/r))/z_1)~(β_n)(f′(z_1/r))~(γ_n)_(z_n),其中n≥2,(z_1,z_2,…,z_n)∈Ω,r=r(Ω)=sup{|z_1|:(z_1,z_2,…,z_n)∈Ω},0≤γ_j≤1-β_j,0≤β_j≤1,这里选取幂函数的单值解析分支,使得((f(z_1))/z_1)~(β_j)|_(z_1=0)=1和(f′(z_1))~(γ_j)|_(z_1=0)=1,j= 2,…,n.证明了Ω上的算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)是将S_α~*(U)的子集映入S_α~*(Ω)(0≤α<1),且对于一些合适的常数β_j,γ_j,p_j,D_p上的这个算子Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)保持α阶星形性或保持β型螺形性,其中(?) U是复平面C上的单位圆,S_α~*(Ω)是Ω上所有正规化α阶星形映射所成的类.也得到:对于某些合适的常数β_j,γ_j,p_j和0≤α<1,Φ_(n,β_2,γ_2,…,β_n,γ_n)~r(f)∈S_α~*(D_p)当且仅当f∈S_α~*(U).  相似文献   

6.
设 $p\geq 7$ 为任意奇素数. 证明了当 $3\leq s 相似文献   

7.
B -值双随机Dirichlet级数的收敛性   总被引:2,自引:2,他引:0       下载免费PDF全文
主要研究了B -值双随机Dirichlet级数在不同条件(i) {X_n}服从强大数定律,且0<\mathop{\underline{\lim}}\limits_{n-->\infty}\Big\|\frac{\sum\limits_{i=1}^n EX_i}{n}\Big\|\leq \mathop{\overline{\lim}}\limits_{n\to\infty}\Big\|\frac{\sum\limits_{i=1}^n EX_i}{n}\Big\|<+\infty.(ii) {X_{n}}独立不同分布,且\mathop{\underline{\lim}}\limits_{n-->\infty}E||X_n||>0,\quad \sup\limits_{n\geq 1}E||X_n||^p <+\infty \quad (p >1)等条件下的收敛性,得出了收敛横坐标的简洁公式.  相似文献   

8.
线性过程关于大数律的精确渐近性   总被引:1,自引:0,他引:1       下载免费PDF全文
该文主要讨论的是滑线性过程 $X_k=\sum\limits_{i=-\infty}^\infty a_{i+k}\varepsilon_i$,其中 $\{\varepsilon_i; -\infty$\varphi$ -混合或负相伴随机变量序列,$\{a_i;-\inftyp$, 若 $E|\varepsilon_1|^r<\infty$$\lim_{\epsilon\searrow 0}\epsilon^{2(r-p)/(2-p)}\sum\limits_{n=1}^\infty n^{r/p-2}P\{|S_n|\geq \epsilonn^{1/p}\}=\frac{p}{r-p}E|Z|^{2(r-p)/(2-p)},$ 其中 $Z$ 是服从均值为零,方差为 $\tau^2=\sigma^2\cdot(\sum\limits_{i=-\infty}^\infty a_i)^2$的正态分布.  相似文献   

9.
10.
假定 $X$ 是具有范数$\|\cdot\|$的复 Banach 空间, $n$ 是一个满足 $\dim X\geq n\geq2$的正整数. 本文考虑由下式定义的推广的Roper-Suffridge算子 $\Phi_{n,\beta_2, \gamma_2, \ldots , \beta_{n+1}, \gamma_{n+1}}(f)$: \begin{equation} \begin{array}{lll} \Phi _{n, \beta_2, \gamma_2, \ldots, \beta_{n+1},\gamma_{n+1}}(f)(x) &;\hspace{-3mm}=&;\hspace{-3mm}\dl\he{j=1}{n}\bigg(\frac{f(x^*_1(x))}{x^*_1(x)})\bigg)^{\beta_j}(f''(x^*_1(x))^{\gamma_j}x^*_j(x) x_j\\ &;&;+\bigg(\dl\frac{f(x^*_1(x))}{x^*_1(x)}\bigg)^{\beta_{n+1}}(f''(x^*_1(x)))^{\gamma_{n+1}}\bigg(x-\dl\he{j=1}{n}x^*_j(x) x_j\bigg),\nonumber \end{array} \end{equation} 其中 $x\in\Omega_{p_1, p_2, \ldots, p_{n+1}}$, $\beta_1=1, \gamma_1=0$ 和 \begin{equation} \begin{array}{lll} \Omega_{p_1, p_2, \ldots, p_{n+1}}=\bigg\{x\in X: \dl\he{j=1}{n}| x^*_j(x)|^{p_j}+\bigg\|x-\dl\he{j=1}{n}x^*_j(x)x_j\bigg\|^{p_{n+1}}<1\bigg\},\nonumber \end{array} \end{equation} 这里 $p_j>1 \,( j=1, 2,\ldots, n+1$), 线性无关族 $\{x_1, x_2, \ldots, x_n \}\subset X $ 与 $\{x^*_1, x^*_2, \ldots, x^*_n \}\subset X^* $ 满足 $x^*_j(x_j)=\|x_j\|=1 (j=1, 2, \ldots, n)$ 和 $x^*_j(x_k)=0 \, (j\neq k)$, 我们选取幂函数的单值分支满足 $(\frac{f(\xi)}{\xi})^{\beta_j}|_{\xi=0}= 1$ 和 $(f''(\xi))^{\gamma_j}|_{\xi=0}=1, \, j=2, \ldots , n+1$. 本文将证明: 对某些合适的常数$\beta_j, \gamma_j$, 算子$\Phi_{n,\beta_2, \gamma_2, \ldots, \beta_{n+1}, \gamma_{n+1}}(f)$ 在$\Omega_{p_1, p_2, \ldots , p_{n+1}}$上保持$\alpha$阶的殆$\beta$型螺形映照和 $\alpha$阶的$\beta$型螺形映照.  相似文献   

11.
具$p$-Laplacian 算子的多点边值问题迭代解的存在性   总被引:1,自引:0,他引:1  
利用单调迭代技巧和推广的Mawhin定理得到下述带有p-Laplacian算子的多点边值问题迭代解的存在性,{(Фp(u'))' f(t,u, Tu)=0, 0(≤)t(≤)1,u(0)=q-1∑i=1γiu(δi),u(1)=m-1∑i=1ηiu(ξi),其中Фp(s)=|s|p-2s,p>1;0<δi<1,γi>0,1(≤)i(≤)q-1;0<ξi<1,ηi(≥)0,1(≤)i(≤)m-1且q-1∑i=1γi<1,m-1∑i=1ηi(≤)1;Tu(t)=∫t0k(t,s)u(s)ds,k(t,s)∈C(I×I,R ).  相似文献   

12.
We mainly study the existence of positive solutions for the following third order singular super-linear multi-point boundary value problem $$ \left \{ \begin{array}{l} x^{(3)}(t)+ f(t, x(t), x'(t))=0,\quad0 where \(0\leq\alpha_{i}\leq\sum_{i=1}^{m_{1}}\alpha_{i}<1\) , i=1,2,…,m 1, \(0<\xi_{1}< \xi_{2}< \cdots<\xi_{m_{1}}<1\) , \(0\leq\beta_{j}\leq\sum_{i=1}^{m_{2}}\beta_{i}<1\) , j=1,2,…,m 2, \(0<\eta_{1}< \eta_{2}< \cdots<\eta_{m_{2}}<1\) . And we obtain some necessary and sufficient conditions for the existence of C 1[0,1] and C 2[0,1] positive solutions by means of the fixed point theorems on a special cone. Our nonlinearity f(t,x,y) may be singular at t=0 and t=1.  相似文献   

13.
In this work, we consider the following second-order m-point boundary value problem on time scales $$\left\{\begin{array}{@{}l}(\phi_{p}(u^{\triangle}(t)))^{\nabla}+h(t)f(t,u(t),u^{\triangle }(t))=0,\quad t\in(0,+\infty)_{\mathbb{T}},\\[4pt]\displaystyle u(0)=\sum_{i=1}^{m-2}\alpha_{i}u(\eta_{i}),\qquad u^{\triangle}(+\infty)=\sum_{i=1}^{m-2}\beta_{i}u^{\triangle}(\eta_{i}).\end{array}\right.$$ We establish new criteria for the existence of at least three unbounded positive solutions. Our results are new even for the corresponding differential $({\mathbb{T}}={\mathbb{R}})$ , difference equation $({\mathbb{T}}={\mathbb{Z}})$ and for the general time-scale setting. An example is given to illustrate our results.  相似文献   

14.
In this paper, we consider the multi-point boundary value problem of second-order nonlinear differential equation on a half line, $$\left\{\begin{array}{l@{\quad }l}(\phi_{p}(u'))'(t)+q(t)f(t,u(t),u'(t))=0,&0<t<\infty,\\[6pt]u'(0)=\sum_{i=1}^{m-2}\alpha_{i}u(\xi_{i}),&u'(\infty)=0.\end{array}\right.$$ By using a fixed point theorem due to Avery and Peterson, we show the existence of at least three positive solutions with suitable growth conditions imposed on the nonlinear term.  相似文献   

15.
研究了欧氏空间R~2中单位方体Q~2=[0,1]~2上沿曲面(t,s,γ(t,s))的振荡奇异积分算子T_(α,β)f(u,v,x)=∫_(Q~2)f(u-t,v-s,x-γ(t,s))e~(it~(-β_1)s~(-β_2))t~(-1-α_1)s~(-1-α_2)dtds从Sobolev空间L_τ~p(R~(2+n))到L~p(R~(2+n))中的有界性,其中x∈R~n,(u,v)∈R~2,(t,s,γ(t,s))=(t,s,t~(P_1)s~(q_1),t~(p_2)s~(q_2),…,t~(p_n)s~(q_n))为R~(2+n)上一个曲面,且β_1α_1≥0,β_2α_20.这些结果推广和改进了R~3上的某些已知的结果.作为应用,得到了乘积空间上粗糖核奇异积分算子的Sobolev有界性.  相似文献   

16.
This paper deals with the existence of solutions for the problem
{(Фp(u′))′=f(t,u,u′),t∈(0,1),
u′(0)=0,u(1)=∑i=1^n-2aiu(ηi),
where Фp(s)=|s|^p-2s,p〉1.0〈η1〈η2〈…〈ηn-2〈1,ai(i=1,2,…,n-2)are non-negative constants and ∑i=1^n-2ai=1.Some known results are improved under some sign and growth conditions. The proof is based on the Brouwer degree theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号