首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
P. Erd?s conjectured in [2] that r‐regular 4‐critical graphs exist for every r ≥ 3 and noted that no such graphs are known for r ≥ 6. This article contains the first example of a 6‐regular 4‐critical graph. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 286–291, 2002  相似文献   

2.
This paper is concerned with a discrete‐time G e o /G /1 repairable queueing system with Bernoulli feedback and randomized ‐policy. The service station may be subject to failures randomly during serving customers and therefore is sent for repair immediately. The ‐policy means that when the number of customers in the system reaches a given threshold value N , the deactivated server is turned on with probability p or is still left off with probability 1?p . Applying the law of total probability decomposition, the renewal theory and the probability generating function technique, we investigate the queueing performance measures and reliability indices simultaneously in our work. Both the transient queue length distribution and the recursive expressions of the steady‐state queue length distribution at various epochs are explicitly derived. Meanwhile, the stochastic decomposition property is presented for the proposed model. Various reliability indices, including the transient and the steady‐state unavailability of the service station, the expected number of the service station breakdowns during the time interval and the equilibrium failure frequency of the service station are also discussed. Finally, an operating cost function is formulated, and the direct search method is employed to numerically find the optimum value of N for minimizing the system cost. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, two accelerated divide‐and‐conquer (ADC) algorithms are proposed for the symmetric tridiagonal eigenvalue problem, which cost O(N2r) flops in the worst case, where N is the dimension of the matrix and r is a modest number depending on the distribution of eigenvalues. Both of these algorithms use hierarchically semiseparable (HSS) matrices to approximate some intermediate eigenvector matrices, which are Cauchy‐like matrices and are off‐diagonally low‐rank. The difference of these two versions lies in using different HSS construction algorithms, one (denoted by ADC1) uses a structured low‐rank approximation method and the other (ADC2) uses a randomized HSS construction algorithm. For the ADC2 algorithm, a method is proposed to estimate the off‐diagonal rank. Numerous experiments have been carried out to show their stability and efficiency. These algorithms are implemented in parallel in a shared memory environment, and some parallel implementation details are included. Comparing the ADCs with highly optimized multithreaded libraries such as Intel MKL, we find that ADCs could be more than six times faster for some large matrices with few deflations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The method fast inverse using nested dissection (FIND) was proposed to calculate the diagonal entries of the inverse of a large sparse symmetric matrix. In this paper, we show how the FIND algorithm can be generalized to calculate off‐diagonal entries of the inverse that correspond to ‘short’ geometric distances within the computational mesh of the original matrix. The idea is to extend the downward pass in FIND that eliminates all nodes outside of each node cluster. In our advanced downwards pass, it eliminates all nodes outside of each ‘node cluster pair’ from a subset of all node cluster pairs. The complexity depends on how far (i,j) is from the main diagonal. In the extension of the algorithm, all entries of the inverse that correspond to vertex pairs that are geometrically closer than a predefined length limit l will be calculated. More precisely, let α be the total number of nodes in a two‐dimensional square mesh. We will show that our algorithm can compute O(α3 ∕ 2 + 2ε) entries of the inverse in O(α3 ∕ 2 + 2ε) time where l = O(α1 ∕ 4 + ε) and 0 ≤ ε ≤1 ∕ 4. Numerical examples are given to illustrate the efficiency of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the initial value problem for the fourth‐order nonlinear Schrödinger type equation related to the theory of vortex filament. By deriving a fundamental estimate on dyadic blocks for the fourth‐order Schrödinger through the [k,Z]‐multiplier norm method. we establish multilinear estimates for this nonlinear fourth‐order Schrödinger type equation. The local well‐posedness for initial data in with s > 1 ∕ 2 is implied by the multilinear estimates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Phelps and Rosa introduced the concept of 1‐rotational Steiner triple system, that is an STS(ν) admitting an automorphism consisting of a fixed point and a single cycle of length ν ? 1 [Discrete Math. 33 ( 12 ), 57–66]. They proved that such an STS(ν) exists if and only if ν ≡ 3 or 9 (mod 24). Here, we speak of a 1‐rotational STS(ν) in a more general sense. An STS(ν) is 1‐rotational over a group G when it admits G as an automorphism group, fixing one point and acting regularly on the other points. Thus the STS(ν)'s by Phelps and Rosa are 1‐rotational over the cyclic group. We denote by ??1r, ??1r, ??1r, ??1r, the spectrum of values of ν for which there exists a 1‐rotational STS(ν) over an abelian, a cyclic, a dicyclic, and an arbitrary group, respectively. In this paper, we determine ??1r and find partial answers about ??1r and ??1r. The smallest 1‐rotational STSs have orders 9, 19, 25 and are unique up to isomorphism. In particular, the only 1‐rotational STS(25) is over SL2(3), the special linear group of dimension 2 over Z3. © 2001 John Wiley & Sons, Inc. J Combin Designs 9: 215–226, 2001  相似文献   

7.
In this paper, we prove the sequential stability of weak solutions over time, in relation to the Navier–Stokes system of compressible self‐gravitating fluids in a three‐dimensional domain. As a byproduct, we show that there exists at least one non‐negative solution to the stationary problem in any bounded domain with a given mass for the adiabatic constant γ > 3 ∕ 2. In particular, for the spherically symmetric case, these conclusions still hold for γ > 4 ∕ 3 or γ = 4 ∕ 3 with a small mass. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In 1960, Dirac posed the conjecture that r‐connected 4‐critical graphs exist for every r ≥ 3. In 1989, Erd?s conjectured that for every r ≥ 3 there exist r‐regular 4‐critical graphs. In this paper, a technique of constructing r‐regular r‐connected vertex‐transitive 4‐critical graphs for even r ≥ 4 is presented. Such graphs are found for r = 6, 8, 10. © 2004 Wiley Periodicals, Inc. J Graph Theory 46: 103–130, 2004  相似文献   

9.
In the presence of pseudo‐spin (p‐spin) and spin symmetries, we use the super‐symmetric formalism to solve the Dirac equation with the generalized Pöschl–Teller potential including the Coulomb‐like tensor interaction with any arbitrary spin‐orbit quantum number κ.. Using the Greene–Aldrich usual approximation scheme to deal with pseudo‐centrifugal or centrifugal rotational kinetic energy l (l + 1) ∕ r2 or , we obtain the Pseudo‐spin and spin‐symmetric energy eigenvalue equation and the normalized upper and lower components of the radial wave functions in closed form. The presence of the tensor coupling interaction removes the degeneracy in the p‐spin and spin doublets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we consider a nonhomogeneous space‐time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the first‐order or second‐order time derivative by the Caputo fractional derivative , α > 0 and the Laplacian operator by the fractional Laplacian ( ? Δ)β ∕ 2, β ∈ (0,2]. We discuss and derive the analytical solutions under nonhomogeneous Dirichlet and Neumann boundary conditions by using the method of separation of variables. The obtained solutions are expressed through multivariate Mittag‐Leffler type functions. Special cases of solutions are also discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

12.
L. Ji 《组合设计杂志》2007,15(2):151-166
A (2,3)‐packing on X is a pair (X, ), where is a set of 3‐subsets (called blocks) of X, such that any pair of distinct points from X occurs together in at most one block. Its leave is a graph (X,E) such that E consists of all the pairs which do not appear in any block of . In this article, we shall construct a set of 6k ? 2 disjoint (2,3)‐packings of order 6k + 4 with K1,3 ∪ 3kK2 or G1 ∪ (3k ? 1)K2 as their common leave for any integer k ≥ 1 with a few possible exceptions (G1 is a special graph of order 6). Such a system can be used to construct perfect threshold schemes as noted by Schellenberg and Stinson ( 22 ). © 2006 Wiley Periodicals, Inc. J Combin Designs  相似文献   

13.
An m‐cycle system (S,C) of order n is said to be {2,3}‐perfect provided each pair of vertices is connected by a path of length 2 in an m‐cycle of C and a path of length 3 in an m‐cycle of C. The class of {2,3}‐perfect m‐cycle systems is said to be equationally defined provided, there exists a variety of quasigroups V with the property that a finite quasigroup (Q, , \, /) belongs to V if and only if its multiplicative (Q, ) part can be constructed from a {2,3}‐perfect m‐cycle system using the 2‐construction (a a = a for all aQ and if ab, a b = c and b a = d if and only if the m‐cycle (…, d, x, a, b, y, c, …) ∈ C). The object of this paper is to show that the class of {2,3}‐perfect m‐cycle systems cannot be equationally defined for all m ≥ 10, m ≠ 11. This combined with previous results shows that {2, 3}‐perfect m‐cycle systems are equationally defined for m = 5, 7, 8, 9, and 11 only. © 2004 Wiley Periodicals, Inc.  相似文献   

14.
The study of resolvable packings of Kv with Kr × Kc's is motivated by the use of DNA library screening. We call such a packing a (v, Kr × Kc, 1)‐RP. As usual, a (v, Kr × Kc, 1)‐RP with the largest possible number of parallel classes (or, equivalently, the largest possible number of blocks) is called optimal. The resolvability implies v ≡ 0 (mod rc). Let ρ be the number of parallel classes of a (v, Kr × Kc, 1)‐RP. Then we have ρ ≤ ?(v‐1)/(r + c ? 2)?. In this article, we present a number of constructive methods to obtain optimal (v, K2 × Kc, 1)‐RPs meeting the aforementioned bound and establish some existence results. In particular, we show that an optimal (v, K2 × K3, 1)‐RP meeting the bound exists if and only if v ≡ 0 (mod 6). © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 177–189, 2009  相似文献   

15.
In this paper, the necessary and sufficient conditions for the existence of cyclic 2q‐cycle and m‐cycle systems of the complete graph with q a prime power and 3 ≤ m ≤ 32 are given. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

16.
By using Nevanlinna theory, we generalize a result given by Wittich to complex differential‐difference equations. The result obtained is that the differential‐difference equation in f which is of only one dominant term, has no admissible meromorphic solution f with hyper‐order less than 1 provided N(r,f) = S(r,f).  相似文献   

17.
In this article, we consider the iterative schemes to compute the canonical polyadic (CP) approximation of quantized data generated by a function discretized on a large uniform grid in an interval on the real line. This paper continues the research on the quantics‐tensor train (QTT) method (“O(d log N)‐quantics approximation of Nd tensors in high‐dimensional numerical modeling” in Constructive Approximation, 2011) developed for the tensor train (TT) approximation of the quantized images of function related data. In the QTT approach, the target vector of length 2L is reshaped to a Lth‐order tensor with two entries in each mode (quantized representation) and then approximated by the QTT tensor including 2r2L parameters, where r is the maximal TT rank. In what follows, we consider the alternating least squares (ALS) iterative scheme to compute the rank‐r CP approximation of the quantized vectors, which requires only 2rL?2L parameters for storage. In the earlier papers (“Tensors‐structured numerical methods in scientific computing: survey on recent advances” in Chemom Intell Lab Syst, 2012), such a representation was called QCan format, whereas in this paper, we abbreviate it as the QCP (quantized canonical polyadic) representation. We test the ALS algorithm to calculate the QCP approximation on various functions, and in all cases, we observed the exponential error decay in the QCP rank. The main idea for recovering a discretized function in the rank‐r QCP format using the reduced number of the functional samples, calculated only at O(2rL) grid points, is presented. The special version of the ALS scheme for solving the arising minimization problem is described. This approach can be viewed as the sparse QCP‐interpolation method that allows to recover all 2rL representation parameters of the rank‐r QCP tensor. Numerical examples show the efficiency of the QCP‐ALS‐type iteration and indicate the exponential convergence rate in r.  相似文献   

18.
A λ‐design is a family ?? = {B1, B2, …, Bv} of subsets of X = {1, 2, …, v} such that |BiBj| = λ for all ijand not all Bi are of the same size. The only known example of λ‐designs (called type‐1 designs) are those obtained from symmetric designs by a certain complementation procedure. Ryser [J Algebra 10 (1968), 246–261] and Woodall [Proc London Math Soc 20 (1970), 669–687] independently conjectured that all λ‐designs are type‐1. Let g = gcd(r ? 1, r* ? 1), where rand r* are the two replication numbers. Ionin and Shrikhande [J Combin Comput 22 (1996), 135–142; J Combin Theory Ser A 74 (1996), 100–114] showed that λ‐designs with g = 1, 2, 3, 4 are type‐1 and that the Ryser–Woodall conjecture is true for λ‐designs on p + 1, 2p + 1, 3p + 1, 4p + 1 points, where pis a prime. Hein and Ionin [Codes and Designs—Proceedings of Conference honoring Prof. D. K. Ray‐Chaudhuri on the occasion of his 65th birthday, Ohio State University Mathematical Research Institute Publications, 10, Walter de Gruyter, Berlin, 2002, pp. 145–156] proved corresponding results for g = 5 and Fiala [Codes and Designs—Proceedings of Conference honoring Prof. D. K. Ray‐Chaudhuri on the occasion of his 65th birthday, Ohio State University Mathematical Research Institute Publications, 10, Walter de Gruyter, Berlin, 2002, pp. 109–124; Ars Combin 68 (2003), 17–32; Ars Combin, to appear] for g = 6, 7, and 8. In this article, we consider λ designs with exactly two block sizes. We show that in this case, the conjecture is true for g = 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, and for g = 10, 14, 18, 22 with v≠4λ ? 1. We also give two results on such λ‐designs on v = 9p + 1 and 12p + 1 points, where pis a prime. © 2010 Wiley Periodicals, Inc. J Combin Designs 19:95‐110, 2011  相似文献   

19.
We investigate the spectrum for k‐GDDs having k + 1 groups, where k = 4 or 5. We take advantage of new constructions introduced by R. S. Rees (Two new direct product‐type constructions for resolvable group‐divisible designs, J Combin Designs, 1 (1993), 15–26) to construct many new designs. For example, we show that a resolvable 4‐GDD of type g5 exists if and only if g ≡ 0 mod 12 and that a resolvable 5‐GDD of type g6 exists if and only if g ≡ 0 mod 20. We also show that a 4‐GDD of type g4m1 exists (with m > 0) if and only if gm ≡ 0 mod 3 and 0 < m ≤ 3g/2, except possibly when (g,m) = (9,3) or (18,6), and that a 5‐GDD of type g5m1 exists (with m > 0) if and only if gm ≡ 0 mod 4 and 0 < m ≤ 4g/3, with 32 possible exceptions. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 363–386, 2000  相似文献   

20.
For integers d≥0, s≥0, a (d, d+s)‐graph is a graph in which the degrees of all the vertices lie in the set {d, d+1, …, d+s}. For an integer r≥0, an (r, r+1)‐factor of a graph G is a spanning (r, r+1)‐subgraph of G. An (r, r+1)‐factorization of a graph G is the expression of G as the edge‐disjoint union of (r, r+1)‐factors. For integers r, s≥0, t≥1, let f(r, s, t) be the smallest integer such that, for each integer df(r, s, t), each simple (d, d+s) ‐graph has an (r, r+1) ‐factorization with x (r, r+1) ‐factors for at least t different values of x. In this note we evaluate f(r, s, t). © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 257‐268, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号