首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
This paper studies a time-variant multi-objective linear fractional transportation problem. In reality, transported goods should reach in destinations within a specific time. Considering the importance of time, a time-variant multi-objective linear fractional transportation problem is formulated here. We take into account the parameters as cost, supply and demand are interval valued that involved in the proposed model, so we treat the model as a multi-objective linear fractional interval transportation problem. To solve the formulated model, we first convert it into a deterministic form using a new transformation technique and then apply fuzzy programming to solve it. The applicability of our proposed method is shown by considering two numerical examples. At last, conclusions and future research directions regarding our study is included.  相似文献   

2.
Let G be an edge-colored graph.The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G.In the authors' previous work,it has been proved that the problem is NP-complete and there does not exist any constant factor approximation algorithm for it unless P=NP.In this paper the authors show that for any fixed integer r≥5,if the edges of a graph G are colored by r colors,called an r-edge-colored graph,the problem remains NP-complete.Similar result holds for the monochromatic path(cycle)partition problem.Therefore,to find some classes of interesting graphs for which the problem can be solved in polynomial time seems interesting. A linear time algorithm for the monochromatic path partition problem for edge-colored trees is given.  相似文献   

3.
The new trust region subproblem with the conic model was proposed in 2005, and was divided into three different cases. The first two cases can be converted into a quadratic model or a convex problem with quadratic constraints, while the third one is a nonconvex problem. In this paper, first we analyze the nonconvex problem, and reduce it to two convex problems. Then we discuss some dual properties of these problems and give an algorithm for solving them. At last, we present an algorithm for solving the new trust region subproblem with the conic model and report some numerical examples to illustrate the efficiency of the algorithm.  相似文献   

4.
We study a generalization of the vertex cover problem. For a given graph with weights on the vertices and an integer k, we aim to find a subset of the vertices with minimum total weight, so that at least k edges in the graph are covered. The problem is called the k-partial vertex cover problem. There are some 2-approximation algorithms for the problem. In the paper we do not improve on the approximation ratios of the previous algorithms, but we derive an iterative rounding algorithm. We present our technique in two algorithms. The first is an iterative rounding algorithm and gives a (2 + Q/OPT )-approximation for the k-partial vertex cover problem where Q is the largest finite weight in the problem definition and OPT is the optimal value for the instance. The second algorithm uses the first as a subroutine and achieves an approximation ratio of 2.  相似文献   

5.
Based on the generalized minimal residual (GMRES) principle, Hu and Reichel proposed a minimal residual algorithm for the Sylvester equation. The algorithm requires the solution of a structured least squares problem. They form the normal equations of the least squares problem and then solve it by a direct solver, so it is susceptible to instability. In this paper, by exploiting the special structure of the least squares problem and working on the problem directly, a numerically stable QR decomposition based algorithm is presented for the problem. The new algorithm is more stable than the normal equations algorithm of Hu and Reichel. Numerical experiments are reported to confirm the superior stability of the new algorithm.  相似文献   

6.
In the rescheduling on a single machine, a set of the original jobs has already been scheduled, in order to make a given objective function is optimal. The decision maker needs to insert the new jobs into the existing schedule without excessively disrupting it. A batching machine is a machine that can handle up to some jobs simultaneously. In this paper,we consider the total completion time under a limit on the sequence disruptions for parallel batching based on rescheduling. For the parallel batching problem based on rescheduling, we research the properties of feasible schedules and optimal schedules on the total completion time under a limit on the maximum time disruptions or total time disruptions, in which the jobs are sequenced in SPT order, and give out the pseudo-polynomial time algorithms on the number of jobs and the processing time of jobs by applying the dynamic programming method.  相似文献   

7.
In this paper,a two-stage semi-hybrid flowshop problem which appears in graphics processing is studied. For this problem, there are two machines M1 and M2, and a set of independent jobs J= {J1 ,J2 ,…,Jn }. Each Ji consists of two tasks Ai and Bi ,and task Ai must be completed before task Bi can start. Furthermore ,task Ai can be processed on M1 for ai time units ,or on Mw for ai^J time units ,while task Bi can only be processed on M2 for bi time units. Jobs and machines are available at time zero and no preemption is allowed. The objective is to minimize the maximum job completion time. It is showed that this problem is NP-hard. And a pseudo-polynomial time optimal algorithm is presented. A polynomial time approximation algorithm with worst-case ratio 2 is also presented.  相似文献   

8.
The alternating direction method of multipliers(ADMM)is a widely used method for solving many convex minimization models arising in signal and image processing.In this paper,we propose an inertial ADMM for solving a two-block separable convex minimization problem with linear equality constraints.This algorithm is obtained by making use of the inertial Douglas-Rachford splitting algorithm to the corresponding dual of the primal problem.We study the convergence analysis of the proposed algorithm in infinite-dimensional Hilbert spaces.Furthermore,we apply the proposed algorithm on the robust principal component analysis problem and also compare it with other state-of-the-art algorithms.Numerical results demonstrate the advantage of the proposed algorithm.  相似文献   

9.
In this paper,we first consider the classical p-median location problem on a network in which the vertex weights and the distances between vertices are uncertain variables.The uncertainty distribution of the optimal objective value of the p-median problem is given and the concepts of the α-p-median,the most p-median and the expected p-median are introduced.Then,it is shown that the uncertain p-median problem is NP-hard on general networks.However,if the underlying network is a tree,an efficient algorithm for the uncertain 1-median problem with linear time complexity is proposed.Finally,we investigate the inverse 1-median problem on a tree with uncertain vertex weights and present a programming model for the problem.Then,it is shown that the proposed model can be reformulated into a deterministic programming model.  相似文献   

10.
In this paper,we study the electromagnetic scattering from a two dimen- sional large rectangular open cavity embedded in an infinite ground plane,which is modelled by Helmholtz equations.By introducing nonlocal transparent boundary con- ditions,the problem in the open cavity is reduced to a bounded domain problem.A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases,respectively.A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hyper- singular integral operator on the aperture and the Helmholtz in the cavity,respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers.A fast algorithm for the second-order approximation is pro- posed for solving the cavity model with layered media.Numerical results show the second-order accuracy and efficiency of the fast algorithm.More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.  相似文献   

11.
We study a coordinated scheduling problem of production and transportation in which each job is transported to a single batching machine for further processing. There are m vehicles that transport jobs from the holding area to the batching machine. Each vehicle can transport only one job at a time. The batching machine can process a batch of jobs simultaneously where there is an upper limit on the batch size. Each batch to be processed occurs a processing cost. The problem is to find a joint schedule of production and transportation such that the sum of the total completion time and the total processing cost is optimized. For a special case of the problem where the job assignment to the vehicles is predetermined, we provide a polynomial time algorithm. For the general problem, we prove that it is NP-hard (in the ordinary sense) and present a pseudo-polynomial time algorithm. A fully polynomial time approximation scheme for the general problem is obtained by converting an especially designed pseudo-polynomial dynamic programming algorithm.  相似文献   

12.
A dominating set of a graph G = (N,E) is a subset S of nodes such that every node is either in S or adjacent to a node which is in S. The domatic number of G is the size of a maximum cardinality partition of N into dominating sets. The problems of finding a minimum cardinality dominating set and the domatic number are both NP-complete even for special classes of graphs. In the present paper we give an O(nE∣) time algorithm that finds a minimum cardinality dominating set when G is a circular arc graph (intersection graph of arcs on a circle). The domatic number problem is solved in O(n2 log n) time when G is a proper circular arc graph, and it is shown NP-complete for general circular arc graphs.  相似文献   

13.
A fully polynomial ?-approximation algorithm is developed for the 0–1 knapsack problem. The algorithm uses results of Lawler and Ibarra and Kim. A pseudo-polynomial dynamic programming algorithm is first suggested which solves the problem in O(nb log n) time and O(b) space.  相似文献   

14.
Let G be an edge-colored graph. The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G. In the authors’ previous work, it has been proved that the problem is NP-complete and there does not exist any constant factor approximation algorithm for it unless P = NP. In this paper the authors show that for any fixed integer r ≥ 5, if the edges of a graph G are colored by r colors, called an r-edge-colored graph, the problem remains NP-complete. Similar result holds for the monochromatic path (cycle) partition problem. Therefore, to find some classes of interesting graphs for which the problem can be solved in polynomial time seems interesting. A linear time algorithm for the monochromatic path partition problem for edge-colored trees is given. Supported by the National Natural Science Foundation of China, PCSIRT and the “973” Program.  相似文献   

15.
We present a new algorithm for the problem of determining the intersection of a half-line with the independent set polytope of a matroid. We show it can also be used to compute the strength of a graph and the corresponding partition using successive contractions. The algorithm is based on the maximization of successive linear forms on the boundary of the polytope. We prove it is a polynomial algorithm in probability with average number of iterations in O(n5). Finally, numerical tests reveal that it should only require O(n2) iterations in practice.  相似文献   

16.
The network flow interdiction problem asks to reduce the value of a maximum flow in a given network as much as possible by removing arcs and vertices of the network constrained to a fixed budget. Although the network flow interdiction problem is strongly NP-complete on general networks, pseudo-polynomial algorithms were found for planar networks with a single source and a single sink and without the possibility to remove vertices. In this work, we introduce pseudo-polynomial algorithms that overcome various restrictions of previous methods. In particular, we propose a planarity-preserving transformation that enables incorporation of vertex removals and vertex capacities in pseudo-polynomial interdiction algorithms for planar graphs. Additionally, a new approach is introduced that allows us to determine in pseudo-polynomial time the minimum interdiction budget needed to remove arcs and vertices of a given network such that the demands of the sink node cannot be completely satisfied anymore. The algorithm works on planar networks with multiple sources and sinks satisfying that the sum of the supplies at the sources equals the sum of the demands at the sinks. A simple extension of the proposed method allows us to broaden its applicability to solve network flow interdiction problems on planar networks with a single source and sink having no restrictions on the demand and supply. The proposed method can therefore solve a wider class of flow interdiction problems in pseudo-polynomial time than previous pseudo-polynomial algorithms and is the first pseudo-polynomial algorithm that can solve non-trivial planar flow interdiction problems with multiple sources and sinks. Furthermore, we show that the k-densest subgraph problem on planar graphs can be reduced to a network flow interdiction problem on a planar graph with multiple sources and sinks and polynomially bounded input numbers.  相似文献   

17.
This study presents an algorithm for efficient scheduling in terms of total flow time and maximum earliness. All the algorithms in the literature for solving this problem are based on heuristic procedures, and cannot necessarily generate all efficient schedules. This study shows that this problem can actually be solved in pseudo-polynomial time, and develops an algorithm for so doing. The complexity of the algorithm is O (n2p? log n). Its computational performance in solving problems of various sizes is determined.  相似文献   

18.
Recently Schöning has shown that a simple local-search algorithm for 3SAT achieves the currently best upper bound, i.e., an expected time of 1.334n. In this paper, we show that this algorithm can be modified to run much faster if there is some kind of imbalance in satisfying assignments and we have a (partial) knowledge about that. Especially if a satisfying assignment has imbalanced 0's and 1's, i.e., p1n 1's and (1-p1)n 0's, then we can find a solution in time 1.260n when and 1.072n when p1=0.1. Such an imbalance often exists in SAT instances reduced from other problems. As a concrete example, we investigate a reduction from 3DM and show our new approach is nontrivially faster than its direct algorithms. Preliminary experimental results are also given.  相似文献   

19.
In this paper, we consider some scheduling problems on a single machine, where weighted or unweighted total tardiness has to be maximized in contrast to usual minimization problems. These problems are theoretically important and have also practical interpretations. For the total weighted tardiness maximization problem, we present an NP-hardness proof and a pseudo-polynomial solution algorithm. For the unweighted total tardiness maximization problem with release dates, NP-hardness is proven. Complexity results for some other classical objective functions (e.g., the number of tardy jobs, total completion time) and various additional constraints (e.g., deadlines, weights and/or release dates of jobs may be given) are presented as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号