首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文讨论下面一类分数阶微分方程多点边值问题 $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$其中$3<\alpha \leq 4$是一个实数.通过应用Mawhin重合度理论和构建适当的算子,得到了该边值问题解的存在性结果.  相似文献   

2.
In this article, we consider some properties of positive solutions for a new conformable integro-differential equation with integral boundary conditions and a parameter $$ \left\{ \begin{array}{l} T_{\alpha}u(t)+\lambda f(t,u(t),I_{\alpha}u(t))=0,t\in[0,1],\u(0)=0,u(1)=\beta\int_{0}^{1}u(t)dt ,\beta\in[\frac 32,2), \ \end{array}\right.\nonumber $$ where $\alpha\in(1,2]$, $\lambda$ is a positive parameter, $T_{\alpha}$ is the usual conformable derivative and $I_{\alpha}$ is the conformable integral, $f:[0,1]\times\mathbf{R^{+}}\times\mathbf{R^{+}}\rightarrow \mathbf{R^{+}} $ is a continuous function, where $\mathbf{R^{+}}=[0,+\infty)$. We use a recent fixed point theorem for monotone operators in ordered Banach spaces, and then establish the existence and uniqueness of positive solutions for the boundary value problem. Further, we give an iterative sequence to approximate the unique positive solution and some good properties of positive solution about the parameter $\lambda$. A concrete example is given to better demonstrate our main result.  相似文献   

3.
In this work, we are mainly concerned with the existence of positive solutions for the fractional boundary-value problem $$ \left\{ {\begin{array}{*{20}{c}} {D_{0+}^{\alpha }D_{0+}^{\alpha }u=f\left( {t,u,{u}^{\prime},-D_{0+}^{\alpha }u} \right),\quad t\in \left[ {0,1} \right],} \hfill \\ {u(0)={u}^{\prime}(0)={u}^{\prime}(1)=D_{0+}^{\alpha }u(0)=D_{0+}^{{\alpha +1}}u(0)=D_{0+}^{{\alpha +1}}u(1)=0.} \hfill \\ \end{array}} \right. $$ Here ?? ?? (2, 3] is a real number, $ D_{0+}^{\alpha } $ is the standard Riemann?CLiouville fractional derivative of order ??. By virtue of some inequalities associated with the fractional Green function for the above problem, without the assumption of the nonnegativity of f, we utilize the Krasnoselskii?CZabreiko fixed-point theorem to establish our main results. The interesting point lies in the fact that the nonlinear term is allowed to depend on u, u??, and $ -D_{0+}^{\alpha } $ .  相似文献   

4.
In this paper, we are concerned with the existence criteria for positive solutions of the following nonlinear arbitrary order fractional differential equations with deviating argument
$\left \{{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2, \right .$\left \{\begin{array}{l@{\quad}l}D_{0^+}^{\alpha}u(t)+h(t)f(u(\theta(t)))=0, & t\in ( 0,1 ),\ n-1<\alpha\leq n,\\[3pt]u^{(i)}(0)=0, & i=0,1,2,\ldots,n-2,\\[3pt][D_{0^+}^{\beta} u(t)]_{t=1}=0, & 1\leq\beta\leq n-2,\end{array} \right .  相似文献   

5.
In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schr\"{o}dinger-Maxwell equations \[\begin{cases} (-\Delta)^\alpha u+\lambda V(x)u+\phi u=f(x,u)-\mu g(x)|u|^{q-2}u, \text{ in } \mathbb R^3,\(-\Delta)^\alpha \phi=K_\alpha u^2, \text{ in } \mathbb R^3, \end{cases}\] where $\lambda,\mu >0$ are two parameters, $\alpha\in (0,1]$, $K_\alpha=\frac{\pi^{-\alpha}\Gamma(\alpha)}{\pi^{-(3-2\alpha)/2}\Gamma((3-2\alpha)/2)}$ and $(-\Delta)^\alpha$ is the fractional Laplacian. Under appropriate assumptions on $f$ and $g$ we obtain an existence theorem for this system.  相似文献   

6.
We study existence of positive weak solution for a class of $p$-Laplacian problem $$\left\{\begin{array}{ll}-\Delta_{p}u = \lambda g(x)[f(u)-\frac{1}{u^{\alpha}}], &amp; x\in \Omega,\\u= 0 , &amp; x\in\partial \Omega,\end{array\right.$$ where $\lambda$ is a positive parameter and $\alpha\in(0,1),$ $\Omega $ is a bounded domain in $ R^{N}$ for $(N &gt; 1)$ with smooth boundary, $\Delta_{p}u = div (|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator for $( p &gt; 2),$ $g(x)$ is $C^{1}$ sign-changing function such that maybe negative near the boundary and be positive in the interior and $f$ is $C^{1}$ nondecreasing function $\lim_{s\to\infty}\frac{f(s)}{s^{p-1}}=0.$ We discuss the existence of positive weak solution when $f$ and $g$ satisfy certain additional conditions. We use the method of sub-supersolution to establish our result.  相似文献   

7.
In this paper, we study the existence result for the nonlinear fractional differential equations with p-Laplacian operator
$$\left\{\begin{array}{ll}D_{0^+}^{\beta} \phi_p( D_{0^+}^{\alpha} u(t))=f(t,u(t),D_{0^+}^{\alpha}u(t)), \quad t\in(0,1),\\ D_{0^+}^{\alpha}u(0)=D_{0^+}^{\alpha}u(1)=0,\end{array}\right.$$
where the p-Laplacian operator is defined as \({\phi_p(s) = |s|^{p-2}s,p > 1, \,\,{\rm and}\,\, \phi_q(s) = \phi_p^{-1}(s), \frac{1}{p}+\frac{1}{q} = 1;\, 0 < \alpha, \beta < 1, 1 < \alpha + \beta < 2 \,\,{\rm and}\,\, D_{0^+}^{\alpha}, D_{0^+}^{\beta}}\) denote the Caputo fractional derivatives, and \({f : [0,1] \times \mathbb{R}^2\rightarrow \mathbb{R}}\) is continuous. Though Chen et al. have studied the same equations in their article, the proof process is not rigorous. We point out the mistakes and give a correct proof of the existence result. The innovation of this article is that we introduce a new definition to weaken the conditions of Arzela–Ascoli theorem and overcome the difficulties of the proof of compactness of the projector K P (I ? Q)N. As applications, an example is presented to illustrate the main results.
  相似文献   

8.
In this paper, we study the existence of positive solutions to the boundary value problem for the fractional differential system $$\left\{\begin{array}{lll} D_{0^+}^\beta \phi_p(D_{0^+}^\alpha u) (t) = f_1 (t, u (t), v (t)),\quad t \in (0, 1),\\ D_{0^+}^\beta \phi_p(D_{0^+}^\alpha v) (t) = f_2 (t, u (t), v(t)), \quad t \in (0, 1),\\ D_{0^+}^\alpha u(0)= D_{0^+}^\alpha u(1)=0,\; u (0) = 0, \quad u (1)-\Sigma_{i=1}^{m-2} a_{1i}\;u(\xi_{1i})=\lambda_1,\\ D_{0^+}^\alpha v(0)= D_{0^+}^\alpha v(1)=0,\; v (0) = 0, \quad v (1)-\Sigma_{i=1}^{m-2} a_{2i}\; v(\xi_{2i})=\lambda_2, \end{array}\right. $$ where ${1<\alpha,\beta\leq 2, 2 <\alpha + \beta\leq 4, D_{0^+}^\alpha}$ is the Riemann–Liouville fractional derivative of order α. By using the Leggett–Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained.  相似文献   

9.
We are concerned with the nonlinear differential equation of fractional order $$\mathcal{D}^{\alpha}_{0+}u(t)=f(t,u(t),u'(t)),\quad \mbox{a.\,e.}\ t\in (0,1),$$ where $\mathcal{D}^{\alpha}_{0+}$ is the Riemann-Liouville fractional order derivative, subject to the boundary conditions $$u(0)=u(1)=0.$$ We obtain the existence of at least one solution using the Leray-Schauder Continuation Principle.  相似文献   

10.
本文研究了分数阶薛定谔-泊松系统$$\left\{\begin{array}{l}(-\Delta)^su+u+\phi u=\lambda f(u)\ \text {in} \ \mathbb {R}^3, \\ (-\Delta)^{\alpha}\phi =u^2\ \text {in} \ \mathbb {R}^3\emph{},\end{array}\right. $$ 非零解的存在性, 其中$s\in (\frac{3}{4},1), \alpha\in(0,1),\lambda$ 是正参数, $(-\Delta)^s,(-\Delta)^{\alpha}$是分数阶拉普拉斯算子. 在一定的假设条件下, 利用扰动法和Morse迭代法, 得到了系统至少一个非平凡解.  相似文献   

11.
We prove the existence of positive solutions for the system$$\begin{align*}\begin{cases}-\Delta_{p} u =\lambda a(x){f(v)}{u^{-\alpha}},\qquad x\in \Omega,\\-\Delta_{q} v = \lambda b(x){g(u)}{v^{-\beta}},\qquad x\in \Omega,\\u = v =0, \qquad x\in\partial \Omega,\end{cases}\end{align*}$$where $\Delta_{r}z={\rm div}(|\nabla z|^{r-2}\nabla z)$, for $r>1$ denotes the r-Laplacian operator and $\lambda$ is a positive parameter, $\Omega$ is a bounded domain in $\mathbb{R}^{n}$, $n\geq1$ with sufficiently smooth boundary and $\alpha, \beta \in (0,1).$ Here $ a(x)$ and $ b(x)$ are $C^{1}$ sign-changingfunctions that maybe negative near the boundary and $f,g $ are $C^{1}$ nondecreasing functions, such that $f, g :\ [0,\infty)\to [0,\infty);$ $f(s)>0,$ $g(s)>0$ for $s> 0$, $\lim_{s\to\infty}g(s)=\infty$ and$$\lim_{s\to\infty}\frac{f(Mg(s)^{\frac{1}{q-1}})}{s^{p-1+\alpha}}=0,\qquad \forall M>0.$$We discuss the existence of positive weak solutions when $f$, $g$, $a(x)$ and $b(x)$ satisfy certain additional conditions. We employ the method of sub-supersolution to obtain our results.  相似文献   

12.
In the present paper, we deal with the existence and multiplicity of solutions for the following impulsive fractional boundary value problem
$$\begin{aligned} {_{t}}D_{T}^{\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) + a(t)|u(t)|^{p-2}u(t)= & {} f(t,u(t)),\;\;t\ne t_j,\;\;\hbox {a.e.}\;\;t\in [0,T],\\ \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} I_j(u(t_j))\;\;j=1,2,\ldots ,n,\\ u(0)= & {} u(T) = 0. \end{aligned}$$
where \(\alpha \in (1/p, 1]\), \(1<p<\infty \), \(0 = t_0<t_1< t_2< \cdots< t_n < t_{n+1} = T\), \(f:[0,T]\times \mathbb {R} \rightarrow \mathbb {R}\) and \(I_j : \mathbb {R} \rightarrow \mathbb {R}\), \(j = 1, \ldots , n\), are continuous functions, \(a\in C[0,T]\) and
$$\begin{aligned} \Delta \left( {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j)\right) \right)= & {} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right) \\&- {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^-\right) \right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right| ^{p-2}{_{0}}D_{t}^{\alpha }u\left( t_j^+\right) \right)= & {} \lim _{t \rightarrow t_j^+} {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) ,\\ {_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t_j^-)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t_j^-)\right)= & {} \lim _{t\rightarrow t_j^-}{_{t}}I_{T}^{1-\alpha }\left( \left| {_{0}}D_{t}^{\alpha }u(t)\right| ^{p-2}{_{0}}D_{t}^{\alpha }u(t)\right) . \end{aligned}$$
By using variational methods and critical point theory, we give some criteria to guarantee that the above-mentioned impulsive problems have at least one weak solution and a sequences of weak solutions.
  相似文献   

13.
具$p$-Laplacian 算子的多点边值问题迭代解的存在性   总被引:1,自引:0,他引:1  
利用单调迭代技巧和推广的Mawhin定理得到下述带有p-Laplacian算子的多点边值问题迭代解的存在性,{(Фp(u'))' f(t,u, Tu)=0, 0(≤)t(≤)1,u(0)=q-1∑i=1γiu(δi),u(1)=m-1∑i=1ηiu(ξi),其中Фp(s)=|s|p-2s,p>1;0<δi<1,γi>0,1(≤)i(≤)q-1;0<ξi<1,ηi(≥)0,1(≤)i(≤)m-1且q-1∑i=1γi<1,m-1∑i=1ηi(≤)1;Tu(t)=∫t0k(t,s)u(s)ds,k(t,s)∈C(I×I,R ).  相似文献   

14.
Consider the Kirchhoff type equation \begin{equation}\label{eq0.1}-\left(a+b\int_{\mathbb{R}^{N}}|\nabla u|^{2}\,dx\right) \Delta u=\left(\frac{1}{|x|^\mu}*F(u)\right)f(u)\ \ \mbox{in}\ \mathbb{R}^N, \ \ u\in D^{1,2}(\mathbb{R}^N), ~~~~~~(0.1)\end{equation}where $a>0$, $b\geq0$, $0<\mu<\min\{N, 4\}$ with $N\geq 3$, $f: \mathbb{R}\to\mathbb{R}$ is a continuous function and $F(u)=\int_0^u f(t)\,dt$. Under some general assumptions on $f$, we establish the existence of a nontrivial spherically symmetric solution for problem (0.1). The proof is mainly based on mountain pass approach and a scaling technique introduced by Jeanjean.  相似文献   

15.
In this paper, we study the existence of positive solution to boundary value problem for fractional differential system $$\left\{\begin{array}{ll}D_{0^+}^\alpha u (t) + a_1 (t) f_1 (t, u (t), v (t)) = 0,\;\;\;\;\;\;\;\quad t \in (0, 1),\\D_{0^+}^\alpha v (t) + a_2 (t) f_2 (t, u (t), v (t)) = 0,\;\;\;\;\;\;\;\quad t \in (0, 1), \;\; 2 < \alpha < 3,\\u (0)= u' (0) = 0, \;\;\;\; u' (1) - \mu_1 u' (\eta_1) = 0,\\v (0)= v' (0) = 0, \;\;\;\; v' (1) - \mu_2 v' (\eta_2) = 0,\end{array}\right.$$ where ${D_{0^+}^\alpha}$ is the Riemann-Liouville fractional derivative of order ??. By using the Leggett-Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear singular boundary value problems is obtained.  相似文献   

16.
In this paper, we discuss the existence of solutions for irregular boundary value problems of nonlinear fractional differential equations with p-Laplacian operator $$\left \{ \begin{array}{l} {\phi}_p(^cD_{0+}^{\alpha}u(t))=f(t,u(t),u'(t)), \quad 0< t<1, \ 1< \alpha \leq2, \\ u(0)+(-1)^{\theta}u'(0)+bu(1)=\lambda, \qquad u(1)+(-1)^{\theta}u'(1)=\int_0^1g(s,u(s))ds,\\ \quad \theta=0,1, \ b \neq \pm1, \end{array} \right . $$ where \(^{c}D_{0+}^{\alpha}\) is the Caputo fractional derivative, ? p (s)=|s| p?2 s, p>1, \({\phi}_{p}^{-1}={\phi}_{q}\) , \(\frac {1}{p}+\frac{1}{q}=1\) and \(f: [0,1] \times\mathbb{R} \times\mathbb {R} \longrightarrow\mathbb{R}\) . Our results are based on the Schauder and Banach fixed point theorems. Furthermore, two examples are also given to illustrate the results.  相似文献   

17.
In this paper, we study a fractional differential equation $$^{c}D^{\alpha}_{0^{+}}u(t)+f(t,u(t))=0,\quad t\in(0, +\infty)$$ satisfying the boundary conditions: $$u^{\prime}(0)=0,\quad \lim_{t\rightarrow +\infty}\,^{c}D^{\alpha-1}_{0^{+}}u(t)=g(u),$$ where $1<\alpha\leqslant2$, $^{c}D^{\alpha}_{0^{+}}$ is the standard Caputo fractional derivative of order $\alpha$. The main tools used in the paper is contraction principle in the Banach space and the fixed point theorem due to D. O''Regan. Some the compactness criterion and existence of solutions are established.  相似文献   

18.
In this paper, we consider the existence, nonexistence and multiplicity of positive solutions for nonlinear fractional differential equation boundary-value problem $$\left\{ \begin{array}{@{}l}-D^{\alpha}_{0+}u(t)=f(t,u(t)), \quad t\in[0,1]\\[3pt]u(0)=u(1)=u''(0)=0\end{array} \right.$$ where 2<????3 is a real number, and $D^{\alpha}_{0+}$ is the Caputo??s fractional derivative, and f:[0,1]×[0,+??)??[0,+??) is continuous. By means of a fixed-point theorem on cones, some existence, nonexistence and multiplicity of positive solutions are obtained.  相似文献   

19.
This paper deals with uniqueness of solutions for integral boundary value problem$\left\{\begin{array}{l}(D_q^{\alpha}u)(t)+f(t, u(t))=0,\ \ \ t\in(0,1),\ u(0)=D_qu(0)=0,\ \ u(1)=\lambda\int_0^1u(s){\mbox d}_qs, \end{array}\right.$ where $\alpha\in(2,3]$, $\lambda\in (0,[\alpha]_q)$, $D_q^{\alpha}$ denotes the $q$-fractional differential operator of order $\alpha$. By using the iterative method and one new fixed point theorem, we obtain that there exist a unique nontrivial solution and a unique positive solution.  相似文献   

20.
Some properties of best monotone approximants in several variables are obtained. We prove the following abstract characterization theorem. Let $(\om, {\cal A},\mu)$ be a measurable space and let ${\cal L}\subset{\cal A}$ be a $\sigma$-lattice. If $f$ belongs to a Musielak–Orlicz space $L_{\varphi}(\Omega, {\cal A},\mu),$ then there exists a $\sigma$-algebra ${\cal A}_f\subset{\cal A}$ such that $g$ is a best $\varphi$-approximant to $f$ from $L_{\varphi}({\cal L})$ iff $g$ is a best $\varphi$-approximant to $f$ from $L_{\p}({\cal A}_f)$. The $\sigma$-algebra ${\cal A}_f$ depends only on $f$. When $\Omega\subset\mbox{{\bf R}}^n$ and $L_{\varphip}({\cal L})$ is the set of monotone functions in several variables, we give sufficient conditions on the geometry of $\Omega$ to obtain a uniqueness theorem. This result extends and unifies previous ones. Finally, we prove a coincidence relation between a function and its best $\varphi$-approximant. Our main results are new, even in the classical Lebesgue spaces $L_p$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号