首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper investigates the general quadratic programming problem, i.e., the problem of finding the minimum of a quadratic function subject to linear constraints. In the case where, over the set of feasible points, the objective function is bounded from below, this problem can be solved by the minimization of a linear function, subject to the solution set of a linear complementarity problem, representing the Kuhn-Tucker conditions of the quadratic problem.To detect in the quadratic problem the unboundedness from below of the objective function, necessary and sufficient conditions are derived. It is shown that, when these conditions are applied, the general quadratic programming problem becomes equivalent to the investigation of an appropriately formulated linear complementarity problem.This research was supported by the Hungarian Research Foundation, Grant No. OTKA/1044.  相似文献   

2.
Perturbations of the quadratic form minimization problem under quadratic constraints of the type of equalities are considered. The minimum function ω in this problem which, to each perturbation of the original problem, assigns a sharp lower bound in the perturbed problem is studied. Sufficient conditions for the upper and lower semicontinuity of the minimum function ω both at zero and in its neighborhood are obtained. Examples showing the importance of these conditions are given.  相似文献   

3.
In this paper, we investigate a constrained optimization problem with a quadratic cost functional and two quadratic equality constraints. It is assumed that the cost functional is positive definite and that the constraints are both feasible and regular (but otherwise they are unrestricted quadratic functions). Thus, the existence of a global constrained minimum is assured. We develop a necessary and sufficient condition that completely characterizes the global minimum cost. Such a condition is of essential importance in iterative numerical methods for solving the constrained minimization problem, because it readily distinguishes between local minima and global minima and thus provides a stopping criterion for the computation. The result is similar to one obtained previously by the authors. In the previous result, we gave a characterization of the global minimum of a constrained quadratic minimization problem in which the cost functional was an arbitrary quadratic functional (as opposed to positive-definite here) and the constraints were at least positive-semidefinite quadratic functions (as opposed to essentially unrestricted here).  相似文献   

4.
This paper addresses itself to the algorithm for minimizing the product of two nonnegative convex functions over a convex set. It is shown that the global minimum of this nonconvex problem can be obtained by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in a higher dimensional space and to apply a branch-and-bound algorithm using an underestimating function. Computational results indicate that our algorithm is efficient when the objective function is the product of a linear and a quadratic functions and the constraints are linear. An extension of our algorithm for minimizing the sum of a convex function and a product of two convex functions is also discussed.  相似文献   

5.
The adjacent only quadratic minimum spanning tree problem is an NP-hard version of the minimum spanning tree where the costs of interaction effects between every pair of adjacent edges are included in the objective function. This paper addresses the biobjective version of this problem. A Pareto local search algorithm is proposed. The algorithm is applied to a set of 108 benchmark instances. The results are compared to the optimal Pareto front generated by a branch and bound algorithm, which is a multiobjective adaptation of a well known algorithm for the mono-objective case.  相似文献   

6.
The nonconvex problem of minimizing the product of a strictly convex quadratic function and the p-th power of a linear function over a convex polyhedron is considered. Some theoretical properties of the problem, such as the existence of minimum points and the generalized convexity of the objective function, are deepened on and a finite algorithm which solves the problem is proposed.  相似文献   

7.
In this paper a barrier function method is proposed for approximating a solution of the nonconvex quadratic programming problem with box constraints. The method attempts to produce a solution of good quality by following a path as the barrier parameter decreases from a sufficiently large positive number. For a given value of the barrier parameter, the method searches for a minimum point of the barrier function in a descent direction, which has a desired property that the box constraints are always satisfied automatically if the step length is a number between zero and one. When all the diagonal entries of the objective function are negative, the method converges to at least a local minimum point of the problem if it yields a local minimum point of the barrier function for a sequence of decreasing values of the barrier parameter with zero limit. Numerical results show that the method always generates a global or near global minimum point as the barrier parameter decreases at a sufficiently slow pace.  相似文献   

8.
A two level global optimization algorithm for multidimensional scaling (MDS) with city-block metric is proposed. The piecewise quadratic structure of the objective function is employed. At the upper level a combinatorial global optimization problem is solved by means of branch and bound method, where an objective function is defined as the minimum of a quadratic programming problem. The later is solved at the lower level by a standard quadratic programming algorithm. The proposed algorithm has been applied for auxiliary and practical problems whose global optimization counterpart was of dimensionality up to 24.  相似文献   

9.
In this paper, we consider an optimal zero-forcing beamformer design problem in multi-user multiple-input multiple-output broadcast channel. The minimum user rate is maximized subject to zero-forcing constraints and power constraint on each base station antenna array element. The natural formulation leads to a nonconvex optimization problem. This problem is shown to be equivalent to a convex optimization problem with linear objective function, linear equality and inequality constraints and quadratic inequality constraints. Here, the indirect elimination method is applied to reduce the convex optimization problem into an equivalent convex optimization problem of lower dimension with only inequality constraints. The primal-dual interior point method is utilized to develop an effective algorithm (in terms of computational efficiency) via solving the modified KKT equations with Newton method. Numerical simulations are carried out. Compared to algorithms based on a trust region interior point method and sequential quadratic programming method, it is observed that the method proposed is much superior in terms of computational efficiency.  相似文献   

10.
Motivated by the fact that important real-life problems, such as the protein docking problem, can be accurately modeled by minimizing a nonconvex piecewise-quadratic function, a nonconvex underestimator is constructed as the minimum of a finite number of strictly convex quadratic functions. The nonconvex underestimator is generated by minimizing a linear function on a reverse convex region and utilizes sample points from a given complex function to be minimized. The global solution of the piecewise-quadratic underestimator is known exactly and gives an approximation to the global minimum of the original function. Successive shrinking of the initial search region to which this procedure is applied leads to fairly accurate estimates, within 0.0060%, of the global minima of synthetic nonconvex functions for which the global minima are known. Furthermore, this process can approximate a nonconvex protein docking function global minimum within four-figure relative accuracy in six refinement steps. This is less than half the number of refinement steps required by previous models such as the convex kernel underestimator (Mangasarian et al., Computational Optimization and Applications, to appear) and produces higher accuracy here.  相似文献   

11.
The maximin of a function being the minimum function of a sum of two bilinear functions with one and the same first vector argument belonging to a polyhedron is considered on a polyhedron of connected variables forming two second vector arguments of the bilinear functions. It is shown that finding the exact lower estimate of this maximin is reducible to solving a quadratic programming problem.  相似文献   

12.
Recently, a characterization of the Lovász theta number based on convex quadratic programming was established. As a consequence of this formulation, we introduce a new upper bound on the stability number of a graph that slightly improves the theta number. Like this number, the new bound can be characterized as the minimum of a function whose values are the optimum values of convex quadratic programs. This paper is oriented mainly to the following question: how can the new bound be used to approximate the maximum stable set for large graphs? With this in mind we present a two-phase heuristic for the stability problem that begins by computing suboptimal solutions using the new bound definition. In the second phase a multi-start tabu search heuristic is implemented. The results of applying this heuristic to some DIMACS benchmark graphs are reported.  相似文献   

13.
Reduction of indefinite quadratic programs to bilinear programs   总被引:2,自引:0,他引:2  
Indefinite quadratic programs with quadratic constraints can be reduced to bilinear programs with bilinear constraints by duplication of variables. Such reductions are studied in which: (i) the number of additional variables is minimum or (ii) the number of complicating variables, i.e., variables to be fixed in order to obtain a linear program, in the resulting bilinear program is minimum. These two problems are shown to be equivalent to a maximum bipartite subgraph and a maximum stable set problem respectively in a graph associated with the quadratic program. Non-polynomial but practically efficient algorithms for both reductions are thus obtaine.d Reduction of more general global optimization problems than quadratic programs to bilinear programs is also briefly discussed.  相似文献   

14.
In this paper, the equilibrium optimization problem is proposed and the assignment problem is extended to the equilibrium multi-job assignment problem, equilibrium multi-job quadratic assignment problem and the minimum cost and equilibrium multi-job assignment problem. Furthermore, the mathematical models of the equilibrium multi-job assignment problem and the equilibrium multi-job quadratic assignment problem with fuzzy parameters are formulated. Finally, a genetic algorithm is designed for solving the proposed programming models and some numerical examples are given to verify the efficiency of the designed algorithm.  相似文献   

15.
In this paper, we give an algorithm to compute the minimum norm solution to the absolute value equation (AVE) in a special case. We show that this solution can be obtained from theorems of the alternative and a useful characterization of solution sets of convex quadratic programs. By using an exterior penalty method, this problem can be reduced to an unconstrained minimization problem with once differentiable convex objective function. Also, we propose a quasi-Newton method for solving unconstrained optimization problem. Computational results show that convergence to high accuracy often occurs in just a few iterations.  相似文献   

16.
《Optimization》2012,61(3):359-369
In this article, we present an algorithm to compute the minimum norm solution of the positive semidefinite linear complementarity problem. We show that its solution can be obtained using the alternative theorems and a convenient characterization of the solution set of a convex quadratic programming problem. This problem reduces to an unconstrained minimization problem with once differentiable convex objective function. We propose an extension of Newton's method for solving the unconstrained optimization problem. Computational results show that convergence to high accuracy often occurs in just a few iterations.  相似文献   

17.
A major problem in the geometry of numbers is the investigation of the local minima of the Epstein zeta function. In this article refined minimum properties of the Epstein zeta function and more general lattice zeta functions are studied. Using an idea of Voronoĭ, characterizations and sufficient conditions are given for lattices at which the Epstein zeta function is stationary or quadratic minimum. Similar problems of a duality character are investigated for the product of the Epstein zeta function of a lattice and the Epstein zeta function of the polar lattice. Besides Voronoĭ type notions such as versions of perfection and eutaxy, these results involve spherical designs and automorphism groups of lattices. Several results are extended to more general lattice zeta functions, where the Euclidean norm is replaced by a smooth norm.  相似文献   

18.
In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of combinatorial quadratic problems that are equivalent to the maxcut problem. Using the Gramian representation of a positive semidefinite matrix, the LRSDP problem can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function with quadratic equality constraints. For the solution of this problem we propose a continuously differentiable exact merit function that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm. Finally, we test our code on an extended set of instances of the maxcut problem and we report comparisons with other existing codes.  相似文献   

19.
In this paper, we investigate a constrained optimization problem with a quadratic cost functional and two quadratic equality constraints. While it is obvious that, for a nonempty constraint set, there exists a global minimum cost, a method to determine if a given local solution yields the global minimum cost has not been established. We develop a necessary and sufficient condition that will guarantee that solutions of the optimization problem yield the global minimum cost. This constrained optimization problem occurs naturally in the computation of the phase margin for multivariable control systems. Our results guarantee that numerical routines can be developed that will converge to the global solution for the phase margin.  相似文献   

20.
Quadratic Unconstrained Binary Optimization (QUBO) problems concern the minimization of quadratic polynomials in n{0,1}-valued variables. These problems are NP-complete, but prior work has identified a sequence of polynomial-time computable lower bounds on the minimum value, denoted by C2,C3,C4,…. It is known that C2 can be computed by solving a maximum flow problem, whereas the only previously known algorithms for computing require solving a linear program. In this paper we prove that C3 can be computed by solving a maximum multicommodity flow problem in a graph constructed from the quadratic function. In addition to providing a lower bound on the minimum value of the quadratic function on {0,1}n, this multicommodity flow problem also provides some information about the coordinates of the point where this minimum is achieved. By looking at the edges that are never saturated in any maximum multicommodity flow, we can identify relational persistencies: pairs of variables that must have the same or different values in any minimizing assignment. We furthermore show that all of these persistencies can be detected by solving single-commodity flow problems in the same network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号