首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
The nonlinear knapsack problem, which has been widely studied in the OR literature, is a bounded nonlinear integer programming problem that maximizes a separable nondecreasing function subject to separable nondecreasing constraints. In this paper we develop a convergent Lagrangian and domain cut method for solving this kind of problems. The proposed method exploits the special structure of the problem by Lagrangian decomposition and dual search. The domain cut is used to eliminate the duality gap and thus to guarantee the finding of an optimal exact solution to the primal problem. The algorithm is first motivated and developed for singly constrained nonlinear knapsack problems and is then extended to multiply constrained nonlinear knapsack problems. Computational results are presented for a variety of medium- or large-size nonlinear knapsack problems. Comparison results with other existing methods are also reported.  相似文献   

2.
A nonconvex generalized semi-infinite programming problem is considered, involving parametric max-functions in both the objective and the constraints. For a fixed vector of parameters, the values of these parametric max-functions are given as optimal values of convex quadratic programming problems. Assuming that for each parameter the parametric quadratic problems satisfy the strong duality relation, conditions are described ensuring the uniform boundedness of the optimal sets of the dual problems w.r.t. the parameter. Finally a branch-and-bound approach is suggested transforming the problem of finding an approximate global minimum of the original nonconvex optimization problem into the solution of a finite number of convex problems.  相似文献   

3.
Numerical methods for solving optimal control problems with equality constraints at the right end of the trajectory are discussed. Algorithms for optimal control search are proposed that are based on the multimethod technique for finding an approximate solution of prescribed accuracy that satisfies terminal conditions. High accuracy is achieved by applying a second-order method analogous to Newton’s method or Bellman’s quasilinearization method. In the solution of problems with direct control constraints, the variation of the control is computed using a finite-dimensional approximation of an auxiliary problem, which is solved by applying linear programming methods.  相似文献   

4.
The problem of finding an x∈Rn such that Axb and x⩾0 arises in numerous contexts. We propose a new optimization method for solving this feasibility problem. After converting Axb into a system of equations by introducing a slack variable for each of the linear inequalities, the method imposes an entropy function over both the original and the slack variables as the objective function. The resulting entropy optimization problem is convex and has an unconstrained convex dual. If the system is consistent and has an interior solution, then a closed-form formula converts the dual optimal solution to the primal optimal solution, which is a feasible solution for the original system of linear inequalities. An algorithm based on the Newton method is proposed for solving the unconstrained dual problem. The proposed algorithm enjoys the global convergence property with a quadratic rate of local convergence. However, if the system is inconsistent, the unconstrained dual is shown to be unbounded. Moreover, the same algorithm can detect possible inconsistency of the system. Our numerical examples reveal the insensitivity of the number of iterations to both the size of the problem and the distance between the initial solution and the feasible region. The performance of the proposed algorithm is compared to that of the surrogate constraint algorithm recently developed by Yang and Murty. Our comparison indicates that the proposed method is particularly suitable when the number of constraints is larger than that of the variables and the initial solution is not close to the feasible region.  相似文献   

5.
An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.  相似文献   

6.
In this paper we present a new approach to solve a two-level optimization problem arising from an approximation by means of the finite element method of optimal control problems governed by unilateral boundary-value problems. The problem considered is to find a minimum of a functional with respect to the control variablesu. The minimized functional depends on control variables and state variablesx. The latter are the optimal solution of an auxiliary quadratic programming problem, whose parameters depend onu.Our main idea is to replace this QP problem by its dual and then apply the barrier penalty method to this dual QP problem or to the primal one if it is in an appropriate form. As a result we obtain a problem approximating the original one. Its good property is the differentiable dependence of state variables with respect to the control variables. Furthermore, we propose a method for finding an approximate solution of a penalized lower-level problem if the optimal solution of the original QP problem is known. We apply the result obtained to some optimal shape design problems governed by the Dirichlet-Signorini boundary-value problem.This research was supported by the Academy of Finland and the Systems Research Institute of the Polish Academy of Sciences.  相似文献   

7.
A method for finding an approximate solution for NP-hard scheduling problems is proposed. The example of the classical NP-hard in the strong sense problem of minimizing the maximum lateness of job processing with a single machine shows how a metric introduced on the instance space of the problem and polynomially solvable areas can be used to find an approximate solution with a guaranteed absolute error. The method is evaluated theoretically and experimentally and is compared with the ED-heuristic. Additionally, for the problem under consideration, we propose a numerical characteristic of polynomial unsolvability, namely, an upper bound for the guaranteed absolute error for each equivalence class of the instance space.  相似文献   

8.
We consider the competitive facility location problem in which two competing sides (the Leader and the Follower) open in succession their facilities, and each consumer chooses one of the open facilities basing on its own preferences. The problem amounts to choosing the Leader’s facility locations so that to obtain maximal profit taking into account the subsequent facility location by the Follower who also aims to obtain maximal profit. We state the problem as a two-level integer programming problem. A method is proposed for calculating an upper bound for the maximal profit of the Leader. The corresponding algorithm amounts to constructing the classical maximum facility location problem and finding an optimal solution to it. Simultaneously with calculating an upper bound we construct an initial approximate solution to the competitive facility location problem. We propose some local search algorithms for improving the initial approximate solutions. We include the results of some simulations with the proposed algorithms, which enable us to estimate the precision of the resulting approximate solutions and give a comparative estimate for the quality of the algorithms under consideration for constructing the approximate solutions to the problem.  相似文献   

9.
pth Power Lagrangian Method for Integer Programming   总被引:1,自引:0,他引:1  
When does there exist an optimal generating Lagrangian multiplier vector (that generates an optimal solution of an integer programming problem in a Lagrangian relaxation formulation), and in cases of nonexistence, can we produce the existence in some other equivalent representation space? Under what conditions does there exist an optimal primal-dual pair in integer programming? This paper considers both questions. A theoretical characterization of the perturbation function in integer programming yields a new insight on the existence of an optimal generating Lagrangian multiplier vector, the existence of an optimal primal-dual pair, and the duality gap. The proposed pth power Lagrangian method convexifies the perturbation function and guarantees the existence of an optimal generating Lagrangian multiplier vector. A condition for the existence of an optimal primal-dual pair is given for the Lagrangian relaxation method to be successful in identifying an optimal solution of the primal problem via the maximization of the Lagrangian dual. The existence of an optimal primal-dual pair is assured for cases with a single Lagrangian constraint, while adopting the pth power Lagrangian method. This paper then shows that an integer programming problem with multiple constraints can be always converted into an equivalent form with a single surrogate constraint. Therefore, success of a dual search is guaranteed for a general class of finite integer programming problems with a prominent feature of a one-dimensional dual search.  相似文献   

10.
An optimal control problem with linear dynamics is considered on a fixed time interval. The ends of the interval correspond to terminal spaces, and a finite-dimensional optimization problem is formulated on the Cartesian product of these spaces. Two components of the solution of this problem define the initial and terminal conditions for the controlled dynamics. The dynamics in the optimal control problem is treated as an equality constraint. The controls are assumed to be bounded in the norm of L2. A saddle-point method is proposed to solve the problem. The method is based on finding saddle points of the Lagrangian. The weak convergence of the method in controls and its strong convergence in state trajectories, dual trajectories, and terminal variables are proved.  相似文献   

11.
We give a necessary condition for the existence of a feasible solution for the transportation problem through a set of admissible cells, and an algorithm to find a set of admissible cells that satisfies the necessary condition. Either there exists a feasible solution through the admissible cells (which is therefore optimal since the complementary slackness conditions hold) or we could begin using the primal–dual algorithm (PDA) at this point. Our approach has two important advantages: Our O(mn) procedure for updating dual variables takes much less computing time than any procedure for solving a maximum flow problem in the primal phase of the PDA. We are never concerned by the degeneracy problem as we are not seeking basic solutions, but admissible cells. An example is presented for illustrating our approach. We finally provide computational results for a set of 30 randomly generated instances. Comparison of our method with the PDA reveals a real speed up.  相似文献   

12.
This paper presents a new exact algorithm for the Capacitated Vehicle Routing Problem (CVRP) based on the set partitioning formulation with additional cuts that correspond to capacity and clique inequalities. The exact algorithm uses a bounding procedure that finds a near optimal dual solution of the LP-relaxation of the resulting mathematical formulation by combining three dual ascent heuristics. The first dual heuristic is based on the q-route relaxation of the set partitioning formulation of the CVRP. The second one combines Lagrangean relaxation, pricing and cut generation. The third attempts to close the duality gap left by the first two procedures using a classical pricing and cut generation technique. The final dual solution is used to generate a reduced problem containing only the routes whose reduced costs are smaller than the gap between an upper bound and the lower bound achieved. The resulting problem is solved by an integer programming solver. Computational results over the main instances from the literature show the effectiveness of the proposed algorithm.   相似文献   

13.
This paper proposes a conic approximation algorithm for solving quadratic optimization problems with linear complementarity constraints.We provide a conic reformulation and its dual for the original problem such that these three problems share the same optimal objective value. Moreover, we show that the conic reformulation problem is attainable when the original problem has a nonempty and bounded feasible domain. Since the conic reformulation is in general a hard problem, some conic relaxations are further considered. We offer a condition under which both the semidefinite relaxation and its dual problem become strictly feasible for finding a lower bound in polynomial time. For more general cases, by adaptively refining the outer approximation of the feasible set, we propose a conic approximation algorithm to identify an optimal solution or an \(\epsilon \)-optimal solution of the original problem. A convergence proof is given under simple assumptions. Some computational results are included to illustrate the effectiveness of the proposed algorithm.  相似文献   

14.
This article presents a simulation-based methodology for finding optimal investment strategy for long-term financial planning. The problem becomes intractable due to its size or the properties of the utility function of the investors. One approach is to make simplifying assumptions regarding the states of the world and/or utility functions in order to obtain a solution. These simplifications lead to the true solution of an approximate problem. Our approach is to find a good approximate solution to the true problem. We approximate the optimal decision in each period with a low dimensional parameterization, thus reformulating the problem as a non-linear, simulation-based optimization in the parameter space. The dimension of the reformulated optimization problem becomes linear in the number of periods. The approach is extendable to other problems where similar solution characteristics are known.  相似文献   

15.
This paper studies the optimization model of a linear objective function subject to a system of fuzzy relation inequalities (FRI) with the max-Einstein composition operator. If its feasible domain is non-empty, then we show that its feasible solution set is completely determined by a maximum solution and a finite number of minimal solutions. Also, an efficient algorithm is proposed to solve the model based on the structure of FRI path, the concept of partial solution, and the branch-and-bound approach. The algorithm finds an optimal solution of the model without explicitly generating all the minimal solutions. Some sufficient conditions are given that under them, some of the optimal components of the model are directly determined. Some procedures are presented to reduce the search domain of an optimal solution of the original problem based on the conditions. Then the reduced domain is decomposed (if possible) into several sub-domains with smaller dimensions that finding the components of the optimal solution in each sub-domain is very easy. In order to obtain an optimal solution of the original problem, we propose another more efficient algorithm which combines the first algorithm, these procedures, and the decomposition method. Furthermore, sufficient conditions are suggested that under them, the problem has a unique optimal solution. Also, a comparison between the recently proposed algorithm and the known ones will be made.  相似文献   

16.
A boundary value problem for an elliptic system of equations is studied that arises in the analysis of a new hydrodynamic model describing charge transport in a planar semiconductor MESFET (metal semiconductor field effect transistor). The problem has a number of features, specifically, the equations of the system involve squared components of the gradients of the unknown functions; the boundary conditions are of a mixed character, i.e., Dirichlet and Neumann conditions are set on different portions of the boundary; and the boundary of the domain is a nonsmooth curve, namely, a rectangle. Under a certain optimal condition, the C 1,α-regularity of a weakened solution of the problem is justified and its existence is proved, while its uniqueness is shown under additional constraints. The results are used to justify the stabilization method as applied to finding approximate stationary solutions of the hydrodynamic model.  相似文献   

17.
The cutwidth minimization problem consists of finding a linear layout of a graph so that the maximum linear cut of edges is minimized. This NP-hard problem has applications in network scheduling, automatic graph drawing and information retrieval. We propose a heuristic method based on the Scatter Search (SS) methodology for finding approximate solutions to this optimization problem. This metaheuristic explores solution space by evolving a set of reference points. Our SS method is based on a GRASP constructive algorithm, a local search strategy based on insertion moves and voting-based combination methods. We also introduce a new measure to control the diversity in the search process. Empirical results with 252 previously reported instances indicate that the proposed procedure compares favorably to previous metaheuristics for this problem, such as Simulated Annealing and Evolutionary Path Relinking.  相似文献   

18.
A nonlocal problem with integral conditions is considered for the system of partial differential equations of the hyperbolic type in a rectangular domain. Sufficient conditions are established for the existence of the unique classical solution of the studied problem in terms of initial data. An algorithm is proposed for finding a sequence of approximate solutions convergent to the exact solution of the problem. Special cases of the problem at hand are considered as an application of the results obtained.  相似文献   

19.
We address finding the semi-global solutions to optimal feedback control and the Hamilton–Jacobi–Bellman (HJB) equation. Using the solution of an HJB equation, a feedback optimal control law can be implemented in real-time with minimum computational load. However, except for systems with two or three state variables, using traditional techniques for numerically finding a semi-global solution to an HJB equation for general nonlinear systems is infeasible due to the curse of dimensionality. Here we present a new computational method for finding feedback optimal control and solving HJB equations which is able to mitigate the curse of dimensionality. We do not discretize the HJB equation directly, instead we introduce a sparse grid in the state space and use the Pontryagin’s maximum principle to derive a set of necessary conditions in the form of a boundary value problem, also known as the characteristic equations, for each grid point. Using this approach, the method is spatially causality free, which enjoys the advantage of perfect parallelism on a sparse grid. Compared with dense grids, a sparse grid has a significantly reduced size which is feasible for systems with relatively high dimensions, such as the 6-D system shown in the examples. Once the solution obtained at each grid point, high-order accurate polynomial interpolation is used to approximate the feedback control at arbitrary points. We prove an upper bound for the approximation error and approximate it numerically. This sparse grid characteristics method is demonstrated with three examples of rigid body attitude control using momentum wheels.  相似文献   

20.
We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum ? 1-norm solution to an underdetermined linear system, an important problem in Compressed Sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号