首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Multiscale finite element for problems with highly oscillatory coefficients   总被引:1,自引:0,他引:1  
Summary. In this paper, we study a multiscale finite element method for solving a class of elliptic problems with finite number of well separated scales. The method is designed to efficiently capture the large scale behavior of the solution without resolving all small scale features. This is accomplished by constructing the multiscale finite element base functions that are adaptive to the local property of the differential operator. The construction of the base functions is fully decoupled from element to element; thus the method is perfectly parallel and is naturally adapted to massively parallel computers. We present the convergence analysis of the method along with the results of our numerical experiments. Some generalizations of the multiscale finite element method are also discussed. Received April 17, 1998 / Revised version received March 25, 2000 / Published online June 7, 2001  相似文献   

2.
The recently introduced multiscale finite element method for solving elliptic equations with oscillating coefficients is designed to capture the large-scale structure of the solutions without resolving all the fine-scale structures. Motivated by the numerical simulation of flow transport in highly heterogeneous porous media, we propose a mixed multiscale finite element method with an over-sampling technique for solving second order elliptic equations with rapidly oscillating coefficients. The multiscale finite element bases are constructed by locally solving Neumann boundary value problems. We provide a detailed convergence analysis of the method under the assumption that the oscillating coefficients are locally periodic. While such a simplifying assumption is not required by our method, it allows us to use homogenization theory to obtain the asymptotic structure of the solutions. Numerical experiments are carried out for flow transport in a porous medium with a random log-normal relative permeability to demonstrate the efficiency and accuracy of the proposed method.  相似文献   

3.
In this article we study two families of multiscale methods for numerically solving elliptic homogenization problems. The recently developed multiscale finite element method [Hou and Wu, J Comp Phys 134 (1997), 169–189] captures the effect of microscales on macroscales through modification of finite element basis functions. Here we reformulate this method that captures the same effect through modification of bilinear forms in the finite element formulation. This new formulation is a general approach that can handle a large variety of differential problems and numerical methods. It can be easily extended to nonlinear problems and mixed finite element methods, for example. The latter extension is carried out in this article. The recently introduced heterogeneous multiscale method [Engquist and Engquist, Comm Math Sci 1 (2003), 87–132] is designed for efficient numerical solution of problems with multiscales and multiphysics. In the second part of this article, we study this method in mixed form (we call it the mixed heterogeneous multiscale method). We present a detailed analysis for stability and convergence of this new method. Estimates are obtained for the error between the homogenized and numerical multiscale solutions. Strategies for retrieving the microstructural information from the numerical solution are provided and analyzed. Relationship between the multiscale finite element and heterogeneous multiscale methods is discussed. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
In this paper, we consider solving second-order elliptic problems with rapidly oscillating coefficients. Under the assumption that the oscillating coefficients are periodic, on the basis of classical homogenization theory, we present a finite element method whose key is to combine a numerical approximation of the 1-order approximate solution of those equations and a numerical approximation of the classical boundary corrector of those equations from different meshes exploiting the need for different levels of resolution. Numerical experiments are included to illustrate the competitive behavior of the proposed finite element method.  相似文献   

5.
This work consists of a numerical study of a multi-scale finite element method for a Stokes-type problem with highly oscillating coefficients. The objective of this method is to capture the multi-scale structure of the solution via local basis functions calculated in advance, which contain the essential information on small scales.  相似文献   

6.
付姚姚  曹礼群 《计算数学》2019,41(4):419-439
带二次修正项的Dirac方程在拓扑绝缘体、石墨烯、超导等新材料电磁光特性分析中有着十分广泛的应用.本文工作的创新点有:一是首次提出了矩阵形式带有二次修正项的Dirac方程,它是比较一般的数学框架,涵盖了上述材料体系很多重要的物理模型,具体见附录A;二是针对上述材料体系的电磁响应问题,提出了有界区域Weyl规范下具有周期间断系数矩阵形式带二次修正项Maxwell-Dirac系统的多尺度渐近方法,结合Crank-Nicolson有限差分方法和自适应棱单元方法,发展了一类多尺度算法.数值试验结果验证了多尺度渐近方法的正确性和算法的有效性.  相似文献   

7.
We consider the approximation of operator functions in resolvent Krylov subspaces. Besides many other applications, such approximations are currently of high interest for the approximation of φ-functions that arise in the numerical solution of evolution equations by exponential integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behaviour if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we analyse a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators whose field of values lies in the left half plane. In contrast to standard Krylov methods, the convergence will be independent of the norm of the discretised operator and thus of the spatial discretisation. We will discuss efficient implementations for finite element discretisations and illustrate our analysis with numerical experiments.  相似文献   

8.
A numerical method for design of beams and frames with complex topology is proposed. The method is based on extended multi-scale finite element method where beam finite elements are used on coarse scale and continuum elements on fine scale. A procedure for calculation of multi-scale base functions, up-scaling and downscaling techniques is proposed by using a modified version of window method that is used in computational homogenization. Coarse scale finite element is embedded into a frame of a material that is representing surrounding structure in a sense of mechanical properties. Results show that this method can capture displacements, shear deformations and local stress-strain gradients with significantly reduced computational time and memory comparing to full scale continuum model. Moreover, this method includes a special hybrid finite elements for precise modelling of structural joints. Hence, the proposed method has a potential application in large scale 2D and 3D structural analysis of non-standard beams and frames where spatial interaction between structural elements is important.  相似文献   

9.
A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our FE-HMM captures long-time dispersive effects of the true solution at a cost similar to that of a standard numerical homogenization scheme which, however, only captures the short-time macroscale behavior of the wave field.  相似文献   

10.
We consider the approximation of trigonometric operator functions that arise in the numerical solution of wave equations by trigonometric integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behavior if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we propose and analyze a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators. In contrast to standard Krylov methods, the convergence will be independent of the norm of the operator and thus of its spatial discretization. We will discuss efficient implementations for finite element discretizations and illustrate our analysis with numerical experiments. AMS subject classification (2000)  65F10, 65L60, 65M60, 65N22  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号