首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We prove a dichotomy between absolute continuity and singularity of the Ginibre point process \(\mathsf {G}\) and its reduced Palm measures \(\{\mathsf {G}_{\mathbf {x}}, \mathbf {x} \in \mathbb {C}^{\ell }, \ell = 0,1,2\ldots \}\), namely, reduced Palm measures \(\mathsf {G}_{\mathbf {x}}\) and \(\mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x} \in \mathbb {C}^{\ell }\) and \(\mathbf {y} \in \mathbb {C}^{n}\) are mutually absolutely continuous if and only if \(\ell = n\); they are singular each other if and only if \(\ell \not = n\). Furthermore, we give an explicit expression of the Radon–Nikodym density \(d\mathsf {G}_{\mathbf {x}}/d \mathsf {G}_{\mathbf {y}}\) for \(\mathbf {x}, \mathbf {y} \in \mathbb {C}^{\ell }\).  相似文献   

2.
The partition algebra \(\mathsf {P}_k(n)\) and the symmetric group \(\mathsf {S}_n\) are in Schur–Weyl duality on the k-fold tensor power \(\mathsf {M}_n^{\otimes k}\) of the permutation module \(\mathsf {M}_n\) of \(\mathsf {S}_n\), so there is a surjection \(\mathsf {P}_k(n) \rightarrow \mathsf {Z}_k(n) := \mathsf {End}_{\mathsf {S}_n}(\mathsf {M}_n^{\otimes k})\), which is an isomorphism when \(n \ge 2k\). We prove a dimension formula for the irreducible modules of the centralizer algebra \(\mathsf {Z}_k(n)\) in terms of Stirling numbers of the second kind. Via Schur–Weyl duality, these dimensions equal the multiplicities of the irreducible \(\mathsf {S}_n\)-modules in \(\mathsf {M}_n^{\otimes k}\). Our dimension expressions hold for any \(n \ge 1\) and \(k\ge 0\). Our methods are based on an analog of Frobenius reciprocity that we show holds for the centralizer algebras of arbitrary finite groups and their subgroups acting on a finite-dimensional module. This enables us to generalize the above result to various analogs of the partition algebra including the centralizer algebra for the alternating group acting on \(\mathsf {M}_n^{\otimes k}\) and the quasi-partition algebra corresponding to tensor powers of the reflection representation of \(\mathsf {S}_n\).  相似文献   

3.
The Cesàro operator C, when acting in the classical growth Banach spaces \({A^{-\gamma}}\) and \({A_0^{-\gamma}}\), for \({\gamma} > 0\), of analytic functions on \({\mathbb{D}}\), is investigated. Based on a detailed knowledge of their spectra (due to A. Aleman and A.-M. Persson) we are able to determine the norms of these operators precisely. It is then possible to characterize the mean ergodic and related properties of C acting in these spaces. In addition, we determine the largest Banach space of analytic functions on \({\mathbb{D}}\) which C maps into \({A^{-\gamma}}\) (resp. into \({A_0^{-\gamma}}\)); this optimal domain space always contains \({A^{-\gamma}}\) (resp. \({A_0^{-\gamma}}\)) as a proper subspace.  相似文献   

4.
Let \({\mathcal{T}}\) be a triangular algebra over a commutative ring \({\mathcal{R}}\), \({\xi}\) be an automorphism of \({\mathcal{T}}\) and \({\mathcal{Z}_{\xi}(\mathcal{T})}\) be the \({\xi}\)-center of \({\mathcal{T}}\). Suppose that \({\mathfrak{q}\colon \mathcal{T}\times \mathcal{T}\longrightarrow \mathcal{T}}\) is an \({\mathcal{R}}\)-bilinear mapping and that \({\mathfrak{T}_{\mathfrak{q}}\colon \mathcal{T}\longrightarrow \mathcal{T}}\) is a trace of \({\mathfrak{q}}\). The aim of this article is to describe the form of \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the commuting condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}=0}\) (resp. the centralizing condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}\in \mathcal{Z}_\xi(\mathcal{T})}\)) for all \({x\in \mathcal{T}}\). More precisely, we will consider the question of when \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the previous condition has the so-called proper form.  相似文献   

5.
The class \({\mathcal{CR}}\) of completely regular semigroups equipped with the unary operation of inversion forms a variety whose lattice of subvarieties is denoted by \({\mathcal{L(CR)}}\). The variety \({\mathcal B}\) of all bands induces two relations \({\mathbf{B}^{\land}}\) and \({\mathbf{B}^{\lor} }\) by meet and join with \({\mathcal B}\). Their classes are intervals with lower ends \({\mathcal V_{B^{\land}}}\) and \({\mathcal V_{B^{\lor}}}\), and upper ends \({\mathcal V^{B^{\land}}}\) and \({\mathcal V^{B^{\lor}}}\). These objects induce four operators on \({\mathcal{L(CR)}}\).The cluster at a variety \({\mathcal V}\) is the set of all varieties obtained from \({\mathcal V}\) by repeated application of these four operators. We identify the cluster at any variety in \({\mathcal{L(CR)}}\).  相似文献   

6.
The Dirichlet eigenvalues \({\{\lambda_{n}\}_{n=1}^{\infty}}\) and Neumann eigenvalues \({\{\mu_{n}\}_{n=1}^{\infty}}\) of the string equation \({\varphi'' (x) +\lambda \rho (x) \varphi(x) =0}\) are considered. It is known that \({ \mu_{n} < \lambda_{n} < \mu_{n+2}}\) for all n. The purpose of this paper is to provide conditions on the mass density \({\rho(x)}\) under which \({\lambda_{n} < \mu_{n+1}}\) or \({\mu_{n+1} < \lambda_{n}.}\)  相似文献   

7.
In the unit cone\({\mathcal{C} := \{(x, y, z)} \in {\mathbb R}^{3} : {x}^{2} + {y}^{2} < {z}^{2}, {z} > {0}\}\) we establish a geometric maximum principle for H-surfaces, where its mean curvature \({H = H(x, y, z)}\) is optimally bounded. Consequently, these surfaces cannot touch the conical boundary \({\partial \mathcal{C}}\) at interior points and have to approach \({\partial \mathcal{C}}\) transversally. By a nonlinear continuity method, we then solve the Dirichlet problem of the H-surface equation in central projection for Jordan-domains \({\Omega}\) which are strictly convex in the following sense: On its whole boundary \({\partial \mathcal{C}(\Omega)}\) their associate cone \({\mathcal{C}(\Omega) := \{(rx, ry, r) \in {\mathbb R}^{3} : (x, y) \in \Omega, r \in (0,+\infty)}\}\) admits rotated unit cones \({O \circ \mathcal{C}}\) as solids of support, where \({O \in {\mathbb R}^{3\times3}}\) represents a rotation in the Euclidean space. Thus we construct the unique H-surface with one-to-one central projection onto these domains \({\Omega}\) bounding a given Jordan-contour \({\Gamma \subset \mathcal{C} \backslash \{0\}}\) with one-toone central projection.  相似文献   

8.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

9.
We consider various aspects of the Segre variety \({\mathcal{S}:=\mathcal{S} _{1,1,1}(2)}\) in PG(7, 2), whose stabilizer group \({\mathcal{G}_{\mathcal{S}}<{\rm GL}(8,2)}\) has the structure \({\mathcal{N}\rtimes{\rm Sym}(3),}\) where \({\mathcal{N} :={\rm GL}(2,2)\times{\rm GL}(2,2)\times{\rm GL} (2,2).}\) In particular we prove that \({\mathcal{S}}\) determines a distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2)}\) such that \({A\mathcal{Z}A^{-1}=\mathcal{Z},}\) for all \({A\in\mathcal{G}_{\mathcal{S}},}\) and in consequence \({\mathcal{S}}\) determines a \({\mathcal{G}_{\mathcal{S}}}\)-invariant spread of 85 lines in PG(7, 2). Furthermore we see that Segre varieties \({\mathcal{S}_{1,1,1}(2)}\) in PG(7, 2) come along in triplets \({\{\mathcal{S},\mathcal{S}^{\prime},\mathcal{S}^{\prime\prime}\}}\) which share the same distinguished Z 3-subgroup \({\mathcal{Z}<{\rm GL}(8,2).}\) We conclude by determining all fifteen \({\mathcal{G}_{\mathcal{S}}}\)-invariant polynomial functions on PG(7, 2) which have degree < 8, and their relation to the five \({\mathcal{G}_{\mathcal{S}}}\)-orbits of points in PG(7, 2).  相似文献   

10.
Let \(G=G(k)\) be a connected reductive group over a p-adic field k. The smooth (and tempered) complex representations of G can be considered as the nondegenerate modules over the Hecke algebra \({\mathcal {H}}={\mathcal {H}}(G)\) and the Schwartz algebra \({\mathcal {S}}={\mathcal {S}}(G)\) forming abelian categories \({\mathcal {M}}(G)\) and \({\mathcal {M}}^t(G)\), respectively. Idempotents \(e\in {\mathcal {H}}\) or \({\mathcal {S}}\) define full subcategories \({\mathcal {M}}_e(G)= \{V : {\mathcal {H}}eV=V\}\) and \({\mathcal {M}}_e^t(G)= \{V : {\mathcal {S}}eV=V\}\). Such an e is said to be special (in \({\mathcal {H}}\) or \({\mathcal {S}}\)) if the corresponding subcategory is abelian. Parallel to Bernstein’s result for \(e\in {\mathcal {H}}\) we will prove that, for special \(e \in {\mathcal {S}}\), \({\mathcal {M}}_e^t(G) = \prod _{\Theta \in \theta _e} {\mathcal {M}}^t(\Theta )\) is a finite direct product of component categories \({\mathcal {M}}^t(\Theta )\), now referring to connected components of the center of \({\mathcal {S}}\). A special \(e\in {\mathcal {H}}\) will be also special in \({\mathcal {S}}\), but idempotents \(e\in {\mathcal {H}}\) not being special can become special in \({\mathcal {S}}\). To obtain conditions we consider the sets \(\mathrm{Irr}^t(G) \subset \mathrm{Irr}(G)\) of (tempered) smooth irreducible representations of G, and we view \(\mathrm{Irr}(G)\) as a topological space for the Jacobson topology defined by the algebra \({\mathcal {H}}\). We use this topology to introduce a preorder on the connected components of \(\mathrm{Irr}^t(G)\). Then we prove that, for an idempotent \(e \in {\mathcal {H}}\) which becomes special in \({\mathcal {S}}\), its support \(\theta _e\) must be saturated with respect to that preorder. We further analyze the above decomposition of \({\mathcal {M}}_e^t(G)\) in the case where G is k-split with connected center and where \(e = e_J \in {\mathcal {H}}\) is the Iwahori idempotent. Here we can use work of Kazhdan and Lusztig to relate our preorder on the support \(\theta _{e_J}\) to the reverse of the natural partial order on the unipotent classes in G. We finish by explicitly computing the case \(G=GL_n\), where \(\theta _{e_J}\) identifies with the set of partitions of n. Surprisingly our preorder (which is a partial order now) is strictly coarser than the reverse of the dominance order on partitions.  相似文献   

11.
Let \({\mathcal{L}\subseteq \mathcal{L}^\prime}\) be first order languages, let \({R \in \mathcal{L}^\prime- \mathcal{L}}\) be a relation symbol, and let \({\mathcal{K}}\) be a class of \({\mathcal{L}^\prime}\)-structures. In this paper, we present semantical conditions equivalent to the existence of an \({\mathcal{L}}\)-formula \({\varphi(\vec{x})}\) such that \({\mathcal{K}\vDash \varphi(\vec{x}) \leftrightarrow R(\vec{x})}\), where \({\varphi}\) has a specific syntactical form (e.g., quantifier free, positive and quantifier free, existential Horn, etc.). For each of these definability results for relations, we also present an analogous version for the definability of functions. Several applications to natural definability questions in universal algebra have been included; most notably definability of principal congruences. The paper concludes with a look at term-interpolation in classes of structures with the same techniques used for definability. Here we obtain generalizations of two classical term-interpolation results: Pixley’s theorem for quasiprimal algebras, and the Baker–Pixley Theorem for finite algebras with a majority term.  相似文献   

12.
Let \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \) be an \(\ell ^1\)-Munn algebra over an arbitrary unital Banach algebra \({\mathcal {A}}\). We characterize homomorphisms from \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \) into an arbitrary Banach algebra \({\mathcal {B}}\) in terms of homomorphisms from \({\mathcal {A}}\) into \({\mathcal {B}}\). Then we discuss homomorphisms from arbitrary Banach algebras into \({\mathcal {LM}}\left( {\mathcal {A}}, P\right) \). Existence and uniqueness of homomorphisms under certain conditions are also discussed. We apply these results to the concrete case of \(\ell ^1(S)\) where S is a Rees matrix semigroup, to identify characters of \(\ell ^1(S)\) in both cases where S is with or without zero. As a consequence if the sandwich matrix of S has a zero entry, then \(\ell ^1(S)\) is character amenable.  相似文献   

13.
We consider the strong field asymptotics for the occurrence of zero modes of certain Weyl–Dirac operators on \({\mathbb{R}^3}\). In particular, we are interested in those operators \({\mathcal{D}_B}\) for which the associated magnetic field \({B}\) is given by pulling back a two-form \({\beta}\) from the sphere \({\mathbb{S}^2}\) to \({\mathbb{R}^3}\) using a combination of the Hopf fibration and inverse stereographic projection. If \({\int_{\mathbb{s}^2} \beta \neq 0}\), we show that
$$\sum_{0 \leq t \leq T} {\rm dim Ker} \mathcal{D}{tB}=\frac{T^2}{8\pi^2}\,\Big| \int_{\mathbb{S}^2}\beta\Big|\,\int_{\mathbb{S}^2}|{\beta}| +o(T^2)$$
as \({T\to+\infty}\). The result relies on Erd?s and Solovej’s characterisation of the spectrum of \({\mathcal{D}_{tB}}\) in terms of a family of Dirac operators on \({\mathbb{S}^2}\), together with information about the strong field localisation of the Aharonov–Casher zero modes of the latter.
  相似文献   

14.
Let X be a non-void set and A be a subalgebra of \({\mathbb{C}^{X}}\) . We call a \({\mathbb{C}}\) -linear functional \({\varphi}\) on A a 1-evaluation if \({\varphi(f) \in f(X) }\) for all \({f\in A}\) . From the classical Gleason–Kahane–?elazko theorem, it follows that if X in addition is a compact Hausdorff space then a mapping \({\varphi}\) of \({C_{\mathbb{C}}(X) }\) into \({\mathbb{C}}\) is a 1-evaluation if and only if \({\varphi}\) is a \({\mathbb{C}}\) -homomorphism. In this paper, we aim to investigate the extent to which this equivalence between 1-evaluations and \({\mathbb{C}}\) -homomorphisms can be generalized to a wider class of self-conjugate subalgebras of \({\mathbb{C}^{X}}\) . In this regards, we prove that a \({\mathbb{C}}\) -linear functional on a self-conjugate subalgebra A of \({\mathbb{C}^{X}}\) is a positive \({\mathbb{C}}\) -homomorphism if and only if \({\varphi}\) is a \({\overline{1}}\) -evaluation, that is, \({\varphi(f) \in\overline{f\left(X\right)}}\) for all \({f\in A}\) . As consequences of our general study, we prove that 1-evaluations and \({\mathbb{C}}\) -homomorphisms on \({C_{\mathbb{C}}\left( X\right)}\) coincide for any topological space X and we get a new characterization of realcompact topological spaces.  相似文献   

15.
It is known that the maximal operator \({\sigma^{\kappa,*}(f)} := sup_{n \in \mathbf{P}}{|{\sigma}_{n}^{\kappa} (f)|}\) is bounded from the dyadic Hardy space \({H_{p}}\) into the space \({L_{p}}\) for \({p > 2/3}\) [6]. Moreover, Goginava and Nagy showed that \({\sigma^{\kappa,*}}\) is not bounded from the Hardy space \({H_{2/3}}\) to the space \({L_{2/3}}\) [9]. The main aim of this paper is to investigate the case \({0 < p < 2/3}\). We show that the weighted maximal operator \({\tilde{\sigma}^{\kappa,*,p}(f) :=sup_{n\in \mathbf{P}} \frac{|{\sigma}_{n}^\kappa (f)|}{n^{2/p-3}}}\), is bounded from the Hardy space \({H_{p}}\) into the space \({L_{p}}\) for any \({0 < p < 2/3}\). With its aid we provide a necessary and sufficient condition for the convergence of Walsh–Kaczmarz–Marcinkiewicz means in terms of modulus of continuity on the Hardy space \({H_p}\), and prove a strong convergence theorem for this means.  相似文献   

16.
Let \({\mathcal {N}}\) be a nest and let \({\mathcal {L}}\) be a weakly closed Lie ideal of the nest algebra \({\mathcal {T} (\mathcal {N})}\) . We explicitly construct the greatest weakly closed associative ideal \({\mathcal {J} (\mathcal {L})}\) contained in \({\mathcal {L}}\) and show that \({\mathcal {J} (\mathcal {L}) \subseteq \mathcal {L} \subseteq \mathcal {J} (\mathcal {L})\oplus {\breve{\mathcal{D}}} (\mathcal {L})}\) , where \({{\breve{\mathcal{D}}}} (\mathcal {L})\) is an appropriate subalgebra of the diagonal \({\mathcal {D} (\mathcal {N})}\) of the nest algebra \({\mathcal {T} (\mathcal {N})}\) . We show that norm-preserving linear extensions of elements of the dual of \({\mathcal {L}}\) , satisfying a certain condition, are uniquely determined on the diagonal of the nest algebra by the ideal \({\mathcal {J} (\mathcal {L})}\) .  相似文献   

17.
For a fairly general reductive group \({G_{/\mathbb{Q}_p}}\), we explicitly compute the space of locally algebraic vectors in the Breuil–Herzig construction \({\Pi(\rho)^{ord}}\), for a potentially semistable Borel-valued representation \({\rho}\) of \({Gal(\bar{\mathbb{Q}}_p/\mathbb{Q}_p)}\). The point being we deal with the whole representation, not just its socle—and we go beyond \({GL_n(\mathbb{Q}_p)}\). In the case of \({GL_2(\mathbb{Q}_p)}\), this relation is one of the key properties of the \({p}\)-adic local Langlands correspondence. We give an application to \({p}\)-adic local-global compatibility for \({\Pi(\rho)^{ord}}\) for modular representations, but with no indecomposability assumptions.  相似文献   

18.
For completely contractive Banach algebras A and B (respectively operator algebras A and B), the necessary and sufficient conditions for the operator space projective tensor product \({A\widehat{\otimes}B}\) (respectively the Haagerup tensor product \({A\otimes^{h}B}\)) to be Arens regular are obtained. Using the non-commutative Grothendieck inequality, we show that, for C*-algebras A and B, \({A\otimes^{\gamma} B}\) is Arens regular if \({A\widehat{\otimes}B}\) and \({A\widehat{\otimes}B^{op}}\) are Arens regular whereas \({A\widehat{\otimes}B}\) is Arens regular if and only if \({A\otimes^{h}B}\) and \({B\otimes^{h}A}\) are, where \({\otimes^h}\), \({\otimes^{\gamma}}\), and \({\widehat{\otimes}}\) are the Haagerup, the Banach space projective tensor norm, and the operator space projective tensor norm, respectively.  相似文献   

19.
Given semisimple commutative Banach algebras \({\mathcal{A}}\) and \({\mathcal{B}}\) and a norm decreasing homomorphism \({\mathcal{T} : \mathcal{B} \rightarrow \mathcal{B}}\), we characterize the multipliers of the perturbed product Banach algebra \({\mathcal{A}\times_T \mathcal{B}}\). As an application it is shown that \({\mathcal{A}\times_T \mathcal{B}}\) has the Bochner–Schoenberg–Eberlein property if and only if both \({\mathcal{A}}\) and \({\mathcal{B}}\) have this property.  相似文献   

20.
Let \({\mathcal{S}}\) be a locally compact semigroup and \(L_{0}^{\infty}({\mathcal{S}},M_{a}({\mathcal{S}}))\) be the Banach space of all μ-measurable (\(\mu\in M_{a}({\mathcal{S}})\)) functions vanishing at infinity, where \(M_{a}({\mathcal{S}})\) denotes the algebra of all measures with continuous translations. Recently, we have shown that \(L_{0}^{\infty}({\mathcal{S}},M_{a}({\mathcal{S}}))^{*}\) can be equipped with an Arens type product. Here, we show that the topological center of \(L_{0}^{\infty}({\mathcal{S}},M_{a}({\mathcal{S}}))^{*}\) coincides with \(M_{a}({\mathcal{S}})\) for a class of locally compact semigroups \({\mathcal{S}}\): this gives a partial solution to a conjecture raised by the authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号