首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Let \({\mathcal{H}}\) be a complex Hilbert space, \({\mathcal{B(H)}}\) be the algebra of all bounded linear operators on \({\mathcal{H}}\) and \({\mathcal{A} \subseteq \mathcal{B(H)}}\) be a von Neumann algebra without nonzero central abelian projections. Let \({p_n(x_1,x_2 ,\ldots ,x_n)}\) be the commutator polynomial defined by n indeterminates \({x_1, \ldots , x_n}\) and their skew Lie products. It is shown that a mapping \({\delta \colon \mathcal{A} \longrightarrow \mathcal{B(H)}}\) satisfies
$$\delta(p_n(A_1, A_2 ,\ldots , A_n))=\sum_{k=1}^np_n(A_1 ,\ldots , A_{k-1}, \delta(A_k), A_{k+1} ,\ldots , A_n)$$
for all \({A_1, A_2 ,\ldots , A_n \in \mathcal{A}}\) if and only if \({\delta}\) is an additive *-derivation. This gives a positive answer to Conjecture 4.2 of [14].
  相似文献   

2.
Let \({\mathcal{L} = \sum_{i=1}^m X_i^2}\) be a real sub-Laplacian on a Carnot group \({\mathbb{G}}\) and denote by \({\nabla_\mathcal{L} = (X_1,\ldots,X_m)}\) the intrinsic gradient related to \({\mathcal{L}}\). Our aim in this present paper is to analyze some features of the \({\mathcal{L}}\)-gauge functions on \({\mathbb{G}}\), i.e., the homogeneous functions d such that \({\mathcal{L}(d^\gamma) = 0}\) in \({\mathbb{G} \setminus \{0\}}\) , for some \({\gamma \in \mathbb{R} \setminus \{0\}}\). We consider the relation of \({\mathcal{L}}\)-gauge functions with: the \({\mathcal{L}}\)-Eikonal equation \({|\nabla_\mathcal{L} u| = 1}\) in \({\mathbb{G}}\); the Mean Value Formulas for the \({\mathcal{L}}\)-harmonic functions; the fundamental solution for \({\mathcal{L}}\); the Bôcher-type theorems for nonnegative \({\mathcal{L}}\)-harmonic functions in “punctured” open sets \({\dot \Omega:= \Omega \setminus \{x_0\}}\).  相似文献   

3.
Let \({C={\rm inf} (k/n)\sum_{i=1}^n x_i(x_{i+1}+\cdots+x_{i+k})^{-1}}\), where the infimum is taken over all pairs of integers \({n\geq k\geq 1}\) and all positive \({x_1,\ldots,x_n}\), \({x_{n+i}=x_i}\). We prove that \({\ln 2 \leq C < 0.9305}\). In the definition of the constant C, the operation \({{\rm inf}_{k}\, {\rm inf}_{n}\, {\rm inf}_{x}}\) can be replaced by \({{\rm lim}_{k \to \infty}\, {\rm lim}_{n \to \infty} {\rm inf}_{x}}\).  相似文献   

4.
For p, q > 0 we study operators T on the Bergman space \({A_{2}(\mathbb{D)}}\) in the disk such that \({\left(\sum_{j}\Vert T\Delta_{j}\Vert_{p}^{q}\right)^{1/q}<\infty,}\) where the norms \({\Vert\cdot\Vert_{p}}\) are in the Schatten class S p (A 2), the projection \({\Delta_{j}f=\sum_{n\in I_{j}}a_{n}z^{n}}\) for \({f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}}\) and \({I_{j}=[2^{j}-1,2^{j+1} )\cap(\mathbb{N}\cup\{0\})}\) for \({j\in\mathbb{N}\cup\{0\}.}\) We consider the relation of this property with mixed norms of the Berezin transform of T and of the related function \({f_{T}(z)={\Vert}T(k_{z})\Vert}\) where k z is the normalized Bergman kernel. These classes of operators denoted by S(p, q) are closely related when assumed to be positive with other sets of operators, like the class of positive operators on A 2 for which \({\left(\sum_{j\geq0}(\sum_{n\in I_{j}}|\left\langle T^pe_{n},e_{n}\right\rangle |)^{q/p}\right)^{1/q}<\infty}\) , where \({\{e_{n}\}_{n\geq0}}\) is the canonical basis of A 2; also we study the relation of Toeplitz operators in S(p, q) with the Schatten-Herz classes, where the decomposition is through dyadic annuli of the domain \({\mathbb{D}}\) .  相似文献   

5.
A topological space X is countably paracompact if and only if X satisfies the condition (A): For any decreasing sequence {Fi} of non-empty closed sets with \({\bigcap_{i=1}^{\infty} F_{i} = \emptyset}\) there exists a sequence {Gi} of open sets such that \({\bigcap_{i=1}^{\infty}\overline{G_{i}}=\emptyset}\) and \({F_{i} \subset G_{i}}\) for every i. We will show, by an example, that this is not true in generalized topological spaces. In fact there is a \({\mu}\)-normal generalized topological space satisfying the analogue of A which is not even countably \({\mu}\)-metacompact. Then we study the relationships between countably \({\mu}\)-paracompactness, countably \({\mu}\)-metacompactness and the condition corresponding to condition A in generalized topological spaces.  相似文献   

6.
The Cesàro operator C, when acting in the classical growth Banach spaces \({A^{-\gamma}}\) and \({A_0^{-\gamma}}\), for \({\gamma} > 0\), of analytic functions on \({\mathbb{D}}\), is investigated. Based on a detailed knowledge of their spectra (due to A. Aleman and A.-M. Persson) we are able to determine the norms of these operators precisely. It is then possible to characterize the mean ergodic and related properties of C acting in these spaces. In addition, we determine the largest Banach space of analytic functions on \({\mathbb{D}}\) which C maps into \({A^{-\gamma}}\) (resp. into \({A_0^{-\gamma}}\)); this optimal domain space always contains \({A^{-\gamma}}\) (resp. \({A_0^{-\gamma}}\)) as a proper subspace.  相似文献   

7.
In this paper, we present a construction that turns certain relations on Graver basis elements of an M-fold matrix \({{A^{(M)}}}\) into relations on Graver basis elements of an \({(M+1)}\)-fold matrix \({{A^{(M+1)}}}\). In doing so, we strengthen the bound on the Graver complexity of the M-fold matrix \({{A_{3\times{M}}}}\) from \({{g(A_{3\times{M}}) \geq 17\cdot2^{M-3}-7}}\) (Berstein and Onn) to \({{g(A_{3\times{M}}) \geq 24\cdot2^{M-3}-21}}\), for \({M \geq 4}\). Moreover, we give a lower bound on the Graver complexity \({{g(A^{(M)})}}\) of general \({M}\)-fold matrices \({{A^{(M)}}}\) and we prove that the bound for \({g(A_{3\times{M}})}\) is not tight.  相似文献   

8.
We generalise in three different directions two well-known results in universal algebra. Grätzer, Lakser and P?onka proved that independent subvarieties \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) of a variety \({\mathcal{V}}\) are disjoint and such that their join \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) (in the lattice of subvarieties of \({\mathcal{V}}\)) is their direct product \({\mathcal{V}_{1} \times \mathcal{V}_{2}}\) . Jónsson and Tsinakis provided a partial converse to this result: if \({\mathcal{V}}\) is congruence permutable and \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) are disjoint, then they are independent (and so \({\mathcal{V}_{1} \vee \mathcal{V}_{2} = \mathcal{V}_{1} \times \mathcal{V}_{2}}\)). We show that (i) if \({\mathcal{V}}\) is subtractive, then Jónsson’s and Tsinakis’ result holds under some minimal assumptions; (ii) if \({\mathcal{V}}\) satisfies some weakened permutability conditions, then disjointness implies a generalised notion of independence and \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) is the subdirect product of \({\mathcal{V}_{1}}\) and \({\mathcal{V}_2}\) ; (iii) the same holds if \({\mathcal{V}}\) is congruence 3-permutable.  相似文献   

9.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

10.
In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.  相似文献   

11.
Call a set \({A \subseteq \mathbb {R}}\)paradoxical if there are disjoint \({A_0, A_1 \subseteq A}\) such that both \({A_0}\) and \({A_1}\) are equidecomposable with \({A}\) via countabbly many translations. \({X \subseteq \mathbb {R}}\) is hereditarily nonparadoxical if no uncountable subset of \({X}\) is paradoxical. Penconek raised the question if every hereditarily nonparadoxical set \({X \subseteq \mathbb {R}}\) is the union of countably many sets, each omitting nontrivial solutions of \({x - y = z - t}\). Nowik showed that the answer is ‘yes’, as long as \({|X| \leq \aleph_\omega}\). Here we show that consistently there exists a counterexample of cardinality \({\aleph_{\omega+1}}\) and it is also consistent that the continuum is arbitrarily large and Penconek’s statement holds for any \({X}\).  相似文献   

12.
We give a sufficient and necessary condition for an analytic function f(z) on the unit disc \({\mathbb{D}}\) with Hadamard gaps, that is, for \({f(z)=\sum_{k=1}^{\infty}a_kz^{n_k}}\) where \({n_{k+1}/n_k\geq\lambda >1 }\) for all \({k\in \mathbb{N}}\), to belong to the weighted-type space \({ H_\mu^{\infty}}\), under some condition posed on the weight function μ. We can define the corresponding little weighted-type space \({H_{\mu,0}^{\infty}}\) and give a criterion for functions to belong to it.  相似文献   

13.
Let \({\frak {e}}\subset {\mathbb {R}}\) be a finite union of ?+1 disjoint closed intervals, and denote by ω j the harmonic measure of the j left-most bands. The frequency module for \({\frak {e}}\) is the set of all integral combinations of ω 1,…,ω ? . Let \(\{\tilde{a}_{n}, \tilde{b}_{n}\}_{n=-\infty}^{\infty}\) be a point in the isospectral torus for \({\frak {e}}\) and \(\tilde{p}_{n}\) its orthogonal polynomials. Let \(\{a_{n},b_{n}\}_{n=1}^{\infty}\) be a half-line Jacobi matrix with \(a_{n} = \tilde{a}_{n} + \delta a_{n}\), \(b_{n} = \tilde{b}_{n} +\delta b_{n}\). Suppose
$\sum_{n=1}^\infty \lvert \delta a_n\rvert ^2 + \lvert \delta b_n\rvert ^2 <\infty $
and \(\sum_{n=1}^{N} e^{2\pi i\omega n} \delta a_{n}\), \(\sum_{n=1}^{N} e^{2\pi i\omega n} \delta b_{n}\) have finite limits as N→∞ for all ω in the frequency module. If, in addition, these partial sums grow at most subexponentially with respect to ω, then for z∈???, \(p_{n}(z)/\tilde{p}_{n}(z)\) has a limit as n→∞. Moreover, we show that there are non-Szeg? class J’s for which this holds.
  相似文献   

14.
We consider the Multilinear set \({\mathcal {S}}\) defined as the set of binary points (xy) satisfying a collection of multilinear equations of the form \(y_I = \prod _{i \in I} x_i\), \(I \in {\mathcal {I}}\), where \({\mathcal {I}}\) denotes a family of subsets of \(\{1,\ldots , n\}\) of cardinality at least two. Such sets appear in factorable reformulations of many types of nonconvex optimization problems, including binary polynomial optimization. A great simplification in studying the facial structure of the convex hull of the Multilinear set is possible when \({\mathcal {S}}\) is decomposable into simpler Multilinear sets \({\mathcal {S}}_j\), \(j \in J\); namely, the convex hull of \({\mathcal {S}}\) can be obtained by convexifying each \({\mathcal {S}}_j\), separately. In this paper, we study the decomposability properties of Multilinear sets. Utilizing an equivalent hypergraph representation for Multilinear sets, we derive necessary and sufficient conditions under which \({\mathcal {S}}\) is decomposable into \({\mathcal {S}}_j\), \(j \in J\), based on the structure of pair-wise intersection hypergraphs. Our characterizations unify and extend the existing decomposability results for the Boolean quadric polytope. Finally, we propose a polynomial-time algorithm to optimally decompose a Multilinear set into simpler subsets. Our proposed algorithm can be easily incorporated in branch-and-cut based global solvers as a preprocessing step for cut generation.  相似文献   

15.
Let \({L_{w}}{:=-w^{-1}{\rm div}(A\nabla)}\) be the degenerate elliptic operator on the Euclidean space \({{\mathbb{R}^{n}}}\), where w is a Muckenhoupt \({A_{2}({\mathbb{R}^{n}})}\) weight. In this article, the authors establish the Riesz transform characterization of the Hardy space \({H^{p}_{L_{w}}({\mathbb{R}}^{n})}\) associated with Lw, for \({w \in A_{q}({\mathbb{R}}^{n}) \cap RH_{\frac{n}{n-2}}({\mathbb{R}^{n}})}\) with \({n \geq 3}\), \({q \in [1,2]}\) and \({p \in (q(\frac{1}{r}+\frac{q-1}{2}+\frac{1}{n})^{-1},1]}\) if, for some \({r \in (1,\,2]}\), \({{\{tL_w e^{-tL_w}\}}_{t\geq 0}}\) satisfies the weighted \({L^{r}-L^{2}}\) full off-diagonal estimates.  相似文献   

16.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

17.
Let \({\mathcal{T}}\) be a triangular algebra over a commutative ring \({\mathcal{R}}\), \({\xi}\) be an automorphism of \({\mathcal{T}}\) and \({\mathcal{Z}_{\xi}(\mathcal{T})}\) be the \({\xi}\)-center of \({\mathcal{T}}\). Suppose that \({\mathfrak{q}\colon \mathcal{T}\times \mathcal{T}\longrightarrow \mathcal{T}}\) is an \({\mathcal{R}}\)-bilinear mapping and that \({\mathfrak{T}_{\mathfrak{q}}\colon \mathcal{T}\longrightarrow \mathcal{T}}\) is a trace of \({\mathfrak{q}}\). The aim of this article is to describe the form of \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the commuting condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}=0}\) (resp. the centralizing condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}\in \mathcal{Z}_\xi(\mathcal{T})}\)) for all \({x\in \mathcal{T}}\). More precisely, we will consider the question of when \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the previous condition has the so-called proper form.  相似文献   

18.
Let \({\alpha}\) be a bounded linear operator in a Banach space \({\mathbb{X}}\), and let A be a closed operator in this space. Suppose that for \({\Phi_1, \Phi_2}\) mapping D(A) to another Banach space \({\mathbb{Y}}\), \({A_{|{\rm ker}\, \Phi_1}}\) and \({A_{|{\rm ker}\, \Phi_2}}\) are generators of strongly continuous semigroups in \({\mathbb{X}}\). Assume finally that \({A_{|{\rm ker}\, \Phi_\text{a}}}\), where \({\Phi_\text{a} = \Phi_1 \alpha + \Phi_2 \beta}\) and \({\beta = I_\mathbb{X} - \alpha}\), is a generator also. In the case where \({\mathbb{X}}\) is an L 1-type space, and \({\alpha}\) is an operator of multiplication by a function \({0 \le \alpha \le 1}\), it is tempting to think of the later semigroup as describing dynamics which, while at state x, is subject to the rules of \({A_{|{\rm ker}\, \Phi_1}}\) with probability \({\alpha (x)}\) and is subject to the rules of \({A_{|{\rm ker}\, \Phi_2}}\) with probability \({\beta (x)= 1 - \alpha (x)}\). We provide an approximation (a singular perturbation) of the semigroup generated by \({A_{|{\rm ker}\, \Phi_\text{a}}}\) by semigroups built from those generated by \({A_{|{\rm ker}\, \Phi_1}}\) and \({A_{|{\rm ker}\, \Phi_2}}\) that supports this intuition. This result is motivated by a model of dynamics of Solea solea (Arino et al. in SIAM J Appl Math 60(2):408–436, 1999–2000; Banasiak and Goswami in Discrete Continuous Dyn Syst Ser A 35(2):617–635, 2015; Banasiak et al. in J Evol Equ 11:121–154, 2011, Mediterr J Math 11(2):533–559, 2014; Banasiak and Lachowicz in Methods of small parameter in mathematical biology, Birkhäuser, 2014; Sanchez et al. in J Math Anal Appl 323:680–699, 2006) and is, in a sense, dual to those of Bobrowski (J Evol Equ 7(3):555–565, 2007), Bobrowski and Bogucki (Stud Math 189:287–300, 2008), where semigroups generated by convex combinations of Feller’s generators were studied.  相似文献   

19.
Let A and \({(-\widetilde{A})}\) be dissipative operators on a Hilbert space \({\mathcal{H}}\) and let \({(A,\widetilde{A})}\) form a dual pair, i.e. \({A \subset \widetilde{A}^*}\), resp. \({\widetilde{A} \subset A^*}\). We present a method of determining the proper dissipative extensions \({\widehat{A}}\) of this dual pair, i.e. \({A\subset \widehat{A} \subset\widetilde{A}^*}\) provided that \({\mathcal{D}(A)\cap\mathcal{D}(\widetilde{A})}\) is dense in \({\mathcal{H}}\). Applications to symmetric operators, symmetric operators perturbed by a relatively bounded dissipative operator and more singular differential operators are discussed. Finally, we investigate the stability of the numerical range of the different dissipative extensions.  相似文献   

20.
Given semisimple commutative Banach algebras \({\mathcal{A}}\) and \({\mathcal{B}}\) and a norm decreasing homomorphism \({\mathcal{T} : \mathcal{B} \rightarrow \mathcal{B}}\), we characterize the multipliers of the perturbed product Banach algebra \({\mathcal{A}\times_T \mathcal{B}}\). As an application it is shown that \({\mathcal{A}\times_T \mathcal{B}}\) has the Bochner–Schoenberg–Eberlein property if and only if both \({\mathcal{A}}\) and \({\mathcal{B}}\) have this property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号