首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
On bipartite zero-divisor graphs   总被引:1,自引:0,他引:1  
A (finite or infinite) complete bipartite graph together with some end vertices all adjacent to a common vertex is called a complete bipartite graph with a horn. For any bipartite graph G, we show that G is the graph of a commutative semigroup with 0 if and only if it is one of the following graphs: star graph, two-star graph, complete bipartite graph, complete bipartite graph with a horn. We also prove that a zero-divisor graph is bipartite if and only if it contains no triangles. In addition, we give all corresponding zero-divisor semigroups of a class of complete bipartite graphs with a horn and determine which complete r-partite graphs with a horn have a corresponding semigroup for r≥3.  相似文献   

2.
The zero-divisor graph of a commutative semigroup with zero is the graph whose vertices are the nonzero zero-divisors of the semigroup, with two distinct vertices adjacent if the product of the corresponding elements is zero. New criteria to identify zero-divisor graphs are derived using both graph-theoretic and algebraic methods. We find the lowest bound on the number of edges necessary to guarantee a graph is a zero-divisor graph. In addition, the removal or addition of vertices to a zero-divisor graph is investigated by using equivalence relations and quotient sets. We also prove necessary and sufficient conditions for determining when regular graphs and complete graphs with more than two triangles attached are zero-divisor graphs. Lastly, we classify several graph structures that satisfy all known necessary conditions but are not zero-divisor graphs.  相似文献   

3.
4.
Tongsuo Wu  Dancheng Lu 《代数通讯》2013,41(8):3043-3052
In this article, we study commutative zero-divisor semigroups determined by graphs. We prove that for all n ≥ 4, the complete graph K n together with two end vertices has a unique corresponding zero-divisor semigroup, while the complete graph K n together with three end vertices has no corresponding semigroups. We determine all the twenty zero-divisor semigroups whose zero-divisor graphs are the complete graph K 3 together with an end vertex.  相似文献   

5.
Let R be a commutative ring with 1 ≠ 0, G be a nontrivial finite group, and let Z(R) be the set of zero divisors of R. The zero-divisor graph of R is defined as the graph Γ(R) whose vertex set is Z(R)* = Z(R)?{0} and two distinct vertices a and b are adjacent if and only if ab = 0. In this paper, we investigate the interplay between the ring-theoretic properties of group rings RG and the graph-theoretic properties of Γ(RG). We characterize finite commutative group rings RG for which either diam(Γ(RG)) ≤2 or gr(Γ(RG)) ≥4. Also, we investigate the isomorphism problem for zero-divisor graphs of group rings. First, we show that the rank and the cardinality of a finite abelian p-group are determined by the zero-divisor graph of its modular group ring. With the notion of zero-divisor graphs extended to noncommutative rings, it is also shown that two finite semisimple group rings are isomorphic if and only if their zero-divisor graphs are isomorphic. Finally, we show that finite noncommutative reversible group rings are determined by their zero-divisor graphs.  相似文献   

6.
Ivana Božić 《代数通讯》2013,41(4):1186-1192
We investigate the properties of (directed) zero-divisor graphs of matrix rings. Then we use these results to discuss the relation between the diameter of the zero-divisor graph of a commutative ring R and that of the matrix ring M n (R).  相似文献   

7.
Dancheng Lu  Tongsuo Wu 《代数通讯》2013,41(12):3855-3864
A nonempty simple connected graph G is called a uniquely determined graph, if distinct vertices of G have distinct neighborhoods. We prove that if R is a commutative ring, then Γ(R) is uniquely determined if and only if either R is a Boolean ring or T(R) is a local ring with x2 = 0 for any x ∈ Z(R), where T(R) is the total quotient ring of R. We determine all the corresponding rings with characteristic p for any finite complete graph, and in particular, give all the corresponding rings of Kn if n + 1 = pq for some primes p, q. Finally, we show that a graph G with more than two vertices has a unique corresponding zero-divisor semigroup if G is a zero-divisor graph of some Boolean ring.  相似文献   

8.
Aiping Gan  Yong Shao 《代数通讯》2013,41(9):3743-3766
If S is a semigroup, the global (or the power semigroup) of S is the set P(S) of all nonempty subsets of S equipped with a naturally defined multiplication. A class K of semigroups is globally determined if any two semigroups of K with isomorphic globals are themselves isomorphic. We study properties of globals of idempotent semigroups and show, in particular, that the class of normal bands is globally determined.  相似文献   

9.
Let R be a commutative ring with nonzero identity and Z(R) its set of zero-divisors. The zero-divisor graph of R is Γ(R), with vertices Z(R)?{0} and distinct vertices x and y are adjacent if and only if xy = 0. For a proper ideal I of R, the ideal-based zero-divisor graph of R is Γ I (R), with vertices {x ∈ R?I | xy ∈ I for some y ∈ R?I} and distinct vertices x and y are adjacent if and only if xy ∈ I. In this article, we study the relationship between the two graphs Γ(R) and Γ I (R). We also determine when Γ I (R) is either a complete graph or a complete bipartite graph and investigate when Γ I (R) ? Γ(S) for some commutative ring S.  相似文献   

10.
Let G = (V, E) be a graph. A set S ? V is a dominating set of G if every vertex in V is either in S or is adjacent to a vertex in S. The domination number γ(G) of G is the minimum cardinality among the dominating sets of G. The main object of this article is to study and characterize the dominating sets of the zero-divisor graph Γ(R) and ideal-based zero-divisor graph Γ I (R) of a commutative ring R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号