首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Customers arriving according to a Markovian arrival process are served at a single server facility. Waiting customers generate priority at a constant rate γγ; such a customer waits in a waiting space of capacity 1 if this waiting space is not already occupied by a priority generated customer; else it leaves the system. A customer in service will be completely served before the priority generated customer is taken for service (non-preemptive service discipline). Only one priority generated customer can wait at a time and a customer generating into priority at that time will have to leave the system in search of emergency service elsewhere. The service times of ordinary and priority generated customers follow PH-distributions. The matrix analytic method is used to compute the steady state distribution. Performance measures such as the probability of n consecutive services of priority generated customers, the probability of the same for ordinary customers, and the mean waiting time of a tagged customer are found by approximating them by their corresponding values in a truncated system. All these results are supported numerically.  相似文献   

2.
Abstract

Customers arriving according to a Markovian arrival process are served at a c server facility. Waiting customers generate into priority while waiting in the system (self-generation of priorities), at a constant rate γ; such a customer is immediately taken for service, if at least one of the servers is free. Else it waits at a waiting space of capacity c exclusively for priority generated customers, provided there is vacancy. A customer in service is not preempted to accommodate a priority generated customer. The service times of ordinary and priority generated customers follow distinct PH-distributions. It is proved that the system is always stable. We provide a numerical procedure to compute the optimal number of servers to be employed to minimize the loss to the system. Several performance measures are evaluated.  相似文献   

3.
This paper examines an M[x]/G/1 queueing system with a randomized vacation policy and at most J vacations. Whenever the system is empty, the server immediately takes a vacation. If there is at least one customer found waiting in the queue upon returning from a vacation, the server will be immediately activated for service. Otherwise, if no customers are waiting for service at the end of a vacation, the server either remains idle with probability p or leaves for another vacation with probability 1 − p. This pattern continues until the number of vacations taken reaches J. If the system is empty by the end of the Jth vacation, the server becomes idle in the system. Whenever one or more customers arrive at server idle state, the server immediately starts providing service for the arrivals. Assume that the server may meet an unpredictable breakdown according to a Poisson process and the repair time has a general distribution. For such a system, we derive the distributions of important system characteristics, such as system size distribution at a random epoch and at a departure epoch, system size distribution at busy period initiation epoch, the distributions of idle period, busy period, etc. Finally, a cost model is developed to determine the joint suitable parameters (pJ) at a minimum cost, and some numerical examples are presented for illustrative purpose.  相似文献   

4.
离散时间服务台可修的排队系统MAP/PH(PH/PH)/1   总被引:5,自引:0,他引:5  
本文研究离散时间可修排队系统,其中顾客的输入过程为离散马尔可夫到达过程(MAP),服务台的寿命,服务台的顾客的服务时间和修理时间均为离散位相型(PH)变量,首先我们考虑广义服务过程,证明它是离散MAP,然后运用阵阵几何解理论,我们给出了系统的稳态队长分布和稳态等待时间分布,同时给出了系统的稳态可用度这一可靠性指标。  相似文献   

5.
We consider finite buffer single server GI/M/1 queue with exhaustive service discipline and multiple working vacations. Service times during a service period, service times during a vacation period and vacation times are exponentially distributed random variables. System size distributions at pre-arrival and arbitrary epoch with some important performance measures such as, probability of blocking, mean waiting time in the system etc. have been obtained. The model has potential application in the area of communication network, computer systems etc. where a single channel is allotted for more than one source.  相似文献   

6.
This paper deals with the steady-state behaviour of an M/G/1 queue with an additional second phase of optional service subject to breakdowns occurring randomly at any instant while serving the customers and delayed repair. This model generalizes both the classical M/G/1 queue subject to random breakdown and delayed repair as well as M/G/1 queue with second optional service and server breakdowns. For this model, we first derive the joint distributions of state of the server and queue size, which is one of chief objectives of the paper. Secondly, we derive the probability generating function of the stationary queue size distribution at a departure epoch as a classical generalization of Pollaczek–Khinchin formula. Next, we derive Laplace Stieltjes transform of busy period distribution and waiting time distribution. Finally, we obtain some important performance measures and reliability indices of this model.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(21-22):5113-5125
This paper deals with the (p, N)-policy M/G/1 queue with an unreliable server and single vacation. Immediately after all of the customers in the system are served, the server takes single vacation. As soon as N customers are accumulated in the queue, the server is activated for services with probability p or deactivated with probability (1  p). When the server returns from vacation and the system size exceeds N, the server begins serving the waiting customers. If the number of customers waiting in the queue is less than N when the server returns from vacation, he waits in the system until the system size reaches or exceeds N. It is assumed that the server is subject to break down according to a Poisson process and the repair time obeys a general distribution. This paper derived the system size distribution for the system described above at a stationary point of time. Various system characteristics were also developed. We then constructed a total expected cost function per unit time and applied the Tabu search method to find the minimum cost. Some numerical results are also given for illustrative purposes.  相似文献   

8.
We consider a discrete time single server queueing system in which arrivals are governed by the Markovian arrival process. During a service period, all customers are served exhaustively. The server goes on vacation as soon as he/she completes service and the system is empty. Termination of the vacation period is controlled by two threshold parameters N and T, i.e. the server terminates his/her vacation as soon as the number waiting reaches N or the waiting time of the leading customer reaches T units. The steady state probability vector is shown to be of matrix-geometric type. The average queue length and the probability that the server is on vacation (or idle) are obtained. We also derive the steady state distribution of the waiting time at arrivals and show that the vacation period distribution is of phase type.  相似文献   

9.
We define and analyze anM/G/1/N vacation model that uses a service discipline that we call theE-limited with limit variation discipline. According to this discipline, the server provides service until either the system is emptied (i.e. exhausted) or a randomly chosen limit ofl customers has been served. The server then goes on a vacation before returning to service the queue again. The queue length distribution and the Laplace-Stieltjes transforms of the waiting time, busy period and cycle time distributions are found. Further, an expression for the mean waiting time is developed. Several previously analyzed service disciplines, including Bernoulli scheduling, nonexhaustive service and limited service, are special cases of the general varying limit discipline that is analyzed in this paper.  相似文献   

10.
This paper deals with a batch service queue and multiple vacations. The system consists of a single server and a waiting room of finite capacity. Arrival of customers follows a Markovian arrival process (MAP). The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in batches of maximum size ‘b’ with a minimum threshold value ‘a’. We obtain the queue length distributions at various epochs along with some key performance measures. Finally, some numerical results have been presented.  相似文献   

11.
In this paper we study a MAP/PH/1 queueing model in which the server is subject to taking vacations and offering services at a lower rate during those times. The service is returned to normal rate whenever the vacation gets over or when the queue length hits a specific threshold value. This model is analyzed in steady state using matrix analytic methods. An illustrative numerical example is discussed.  相似文献   

12.
This paper studies the vacation policies of an M/G/1 queueing system with server breakdowns, startup and closedown times, in which the length of the vacation period is controlled either by the number of arrivals during the vacation period, or by a timer. After all the customers are served in the queue exhaustively, the server is shutdown (deactivates) by a closedown time. At the end of the shutdown time, the server immediately takes a vacation and operates two different policies: (i) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or the waiting time of the leading customer reaches T units; and (ii) The server reactivates as soon as the number of arrivals in the queue reaches to a predetermined threshold N or T time units have elapsed since the end of the closedown time. If the timer expires or the number of arrivals exceeds the threshold N, then the server reactivates and requires a startup time before providing the service until the system is empty. If some customers arrive during this closedown time, the service is immediately started without leaving for a vacation and without a startup time. We analyze the system characteristics for each scheme.  相似文献   

13.
In this paper, we consider a discrete-time finite-capacity queue with Bernoulli arrivals and batch services. In this queue, the single server has a variable service capacity and serves the customers only when the number of customers in system is at least a certain threshold value. For this queue, we first obtain the queue-length distribution just after a service completion, using the embedded Markov chain technique. Then we establish a relationship between the queue-length distribution just after a service completion and that at a random epoch, using elementary ‘rate-in = rate-out’ arguments. Based on this relationship, we obtain the queue-length distribution at a random (as well as at an arrival) epoch, from which important performance measures of practical interest, such as the mean queue length, the mean waiting time, and the loss probability, are also obtained. Sample numerical examples are presented at the end.  相似文献   

14.
Tian  Naishuo  Zhang  Zhe George 《Queueing Systems》2002,40(3):283-294
We study a discrete-time GI/Geo/1 queue with server vacations. In this queueing system, the server takes vacations when the system does not have any waiting customers at a service completion instant or a vacation completion instant. This type of discrete-time queueing model has potential applications in computer or telecommunication network systems. Using matrix-geometric method, we obtain the explicit expressions for the stationary distributions of queue length and waiting time and demonstrate the conditional stochastic decomposition property of the queue length and waiting time in this system.  相似文献   

15.
We consider a single-server, two-phase queueing system with a fixed-size batch policy. Customers arrive at the system according to a Poisson process and receive batch service in the first-phase followed by individual services in the second-phase. The batch service in the first-phase is applied for a fixed number (k) of customers. If the number of customers waiting for the first-phase service is less than k when the server completes individual services, the system stays idle until the queue length reaches k. We derive the steady state distribution for the system’s queue length. We also show that the stochastic decomposition property can be applied to our model. Finally, we illustrate the process of finding the optimal batch size that minimizes the long-run average cost under a linear cost structure.  相似文献   

16.
We consider a multi-server retrial queue with the Batch Markovian Arrival Process (BMAP). The servers are identical and independent of each other. The service time distribution of a customer by a server is of the phase (PH) type. If a group of primary calls meets idle servers the primary calls occupy the corresponding number of servers. If the number of idle servers is insufficient the rest of calls go to the orbit of unlimited size and repeat their attempts to get service after exponential amount of time independently of each other. Busy servers are subject to breakdowns and repairs. The common flow of breakdowns is the MAP. An event of this flow causes a failure of any busy server with equal probability. When a server fails the repair period starts immediately. This period has PH type distribution and does not depend on the repair time of other broken-down servers and the service time of customers occupying the working servers. A customer whose service was interrupted goes to the orbit with some probability and leaves the system with the supplementary probability. We derive the ergodicity condition and calculate the stationary distribution and the main performance characteristics of the system. Illustrative numerical examples are presented.  相似文献   

17.
Lee  Ho Woo  Cheon  Sahng Hoon  Lee  Eui Yong  Chae  K.C. 《Queueing Systems》2004,48(3-4):421-443
We study the workload (unfinished work) and the waiting time of the queueing system with MAP arrivals under D-policy. The D-policy stipulates that the idle server begin to serve the customers only when the sum of the service times of all waiting customers exceeds some fixed threshold D. We first set up the system equations for workload and obtain the steady-state distributions of workloads at an arbitrary idle and busy points of time. We then proceed to obtain the waiting time distribution of an arbitrary customer based on the workload results. The M/G/1/D-policy queue will be investigated as a special case.  相似文献   

18.
We consider an M[x]/G/1 queueing system with a startup time, where all arriving customers demand first the essential service and some of them may further demand one of other optional services: Type 1, Type 2, … , and Type J service. The service times of the essential service and of the Type i  (i=1,2,…,J)(i=1,2,,J) service are assumed to be random variables with arbitrary distributions. The server is turned off each time when the system is empty. As soon as a customer or a batch of customers arrives, the server immediately performs a startup which is needed before starting each busy period. We derive the steady-state results, including system size distribution at a random epoch and at a departure epoch, the distributions of idle and busy periods, and waiting time distribution in the queue. Some special cases are also presented.  相似文献   

19.
This paper examines a discrete-time Geo/G/1 queue, where the server may take at most J − 1 vacations after the essential vacation. In this system, messages arrive according to Bernoulli process and receive corresponding service immediately if the server is available upon arrival. When the server is busy or on vacation, arriving messages have to wait in the queue. After the messages in the queue are served exhaustively, the server leaves for the essential vacation. At the end of essential vacation, the server activates immediately to serve if there are messages waiting in the queue. Alternatively, the server may take another vacation with probability p or go into idle state with probability (1 − p) until the next message arrives. Such pattern continues until the number of vacations taken reaches J. This queueing system has potential applications in the packet-switched networks. By applying the generating function technique, some important performance measures are derived, which may be useful for network and software system engineers. A cost model, developed to determine the optimum values of p and J at a minimum cost, is also studied.  相似文献   

20.
In this paper we analyze two single server queueing-inventory systems in which items in the inventory have a random common life time. On realization of common life time, all customers in the system are flushed out. Subsequently the inventory reaches its maximum level S through a (positive lead time) replenishment for the next cycle which follows an exponential distribution. Through cancellation of purchases, inventory gets added until their expiry time; where cancellation time follows exponential distribution. Customers arrive according to a Poisson process and service time is exponentially distributed. On arrival if a customer finds the server busy, then he joins a buffer of varying size. If there is no inventory, the arriving customer first try to queue up in a finite waiting room of capacity K. Finding that at full, he joins a pool of infinite capacity with probability γ (0 < γ < 1); else it is lost to the system forever. We discuss two models based on ‘transfer’ of customers from the pool to the waiting room / buffer. In Model 1 when, at a service completion epoch the waiting room size drops to preassigned number L ? 1 (1 < L < K) or below, a customer is transferred from pool to waiting room with probability p (0 < p < 1) and positioned as the last among the waiting customers. If at a departure epoch the waiting room turns out to be empty and there is at least one customer in the pool, then the one ahead of all waiting in the pool gets transferred to the waiting room with probability one. We introduce a totally different transfer mechanism in Model 2: when at a service completion epoch, the server turns idle with at least one item in the inventory, the pooled customer is immediately taken for service. At the time of a cancellation if the server is idle with none, one or more customers in the waiting room, then the head of the pooled customer go to the buffer directly for service. Also we assume that no customer joins the system when there is no item in the inventory. Several system performance measures are obtained. A cost function is discussed for each model and some numerical illustrations are presented. Finally a comparison of the two models are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号