首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
It was conjectured by Bouchet that every bidirected graph which admits a nowhere-zero κ flow will admit a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. Zyka improved the result with 6 replaced by 30. Xu and Zhang showed that the conjecture is true for 6-edge-connected graphs. And for 4-edge-connected graphs, Raspaud and Zhu proved it is true with 6 replaced by 4. In this paper, we show that Bouchet's conjecture is true with 6 replaced by 15 for 3-edge-connected graphs.  相似文献   

2.
STRONG EMBEDDINGS OF PLANAR GRAPHS ON HIGHER SURFACES   总被引:1,自引:0,他引:1  
In this paper, the authors discuss the upper bound for the genus of strong embeddings for 3-connected planar graphs on higher surfaces. It is shown that the problem of determining the upper bound for the strong embedding of 3-connected planar near-triangulations on higher non-orientable surfaces is NP-hard. As a corollary, a theorem of Richter, Seymour and Siran about the strong embedding of 3-connected planar graphs is generalized to orientable surface.  相似文献   

3.
Cycle base theory of a graph has been well studied in abstract mathematical field such matroid theory as Whitney and Tutte did and found many applications in pratical uses such as electric circuit theory and structure analysis, etc. In this paper graph embedding theory is used to investigate cycle base structures of a 2-(edge)-connected graph on the sphere and the projective plane and it is shown that short cycles do generate the cycle spaces in the case of ““““small face-embeddings““““. As applications the authors find the exact formulae for the minimum lengthes of cycle bases of some types of graphs and present several known results. Infinite examples shows that the conditions in their main results are best possible and there are many 3-connected planar graphs whose minimum cycle bases can not be determined by the planar formulae but may be located by re-embedding them into the projective plane.  相似文献   

4.
§ 1 IntroductionA strong embeddingμ( G) of a graph G in a surface S is such an embedding thateachface boundary of the surface is a circuit.( A strong embedding is also sometimes called acircular embedding,see[1 ] orclosed2 -cell embedding[2 ] ) .Graphsconsidered here are sim-ple( that is,they have no loops or multiple edges) .Terminology here follows those in[3] .In[1 ] ,Richter,Seymour and Siran proved that every3-connected planar graph canbe strongly embedded on some non-orientable sur…  相似文献   

5.
6.
The genus distribution of a graph is a polynomial whose coefficients are the partition of the number of embeddings with respect to the genera. In this paper, the genus distribution of Mobius ladders is provided which is an infinite class of 3-connected simple graphs.  相似文献   

7.
In this paper,we show that for a locally LEW-embedded 3-connected graph G in orientable surface,the following results hold:1) Each of such embeddings is minimum genus embedding;2) The facial cycles are precisely the induced nonseparating cycles which implies the uniqueness of such embeddings;3) Every overlap graph O(G,C) is a bipartite graph and G has only one C-bridge H such that CUH is nonplanar provided C is a contractible cycle shorter than every noncontractible cycle containing an edge of C.This ext...  相似文献   

8.
Wang Wei-fan[1] proved that the edge-face chromatic number of a 2-connected 1-tree with the maximum degree is not less than 6 is its maximum degree, and he conjectured that it is true when the maximum degree is 5. This paper proves the conjecture.  相似文献   

9.
In this paper,the problem of construction of exponentially many minimum genus embeddings of complete graphs in surfaces are studied.There are three approaches to solve this problem.The first approach is to construct exponentially many graphs by the theory of graceful labeling of paths;the second approach is to find a current assignment of the current graph by the theory of current graph;the third approach is to find exponentially many embedding(or rotation) schemes of complete graph by finding exponentially many distinct maximum genus embeddings of the current graph.According to this three approaches,we can construct exponentially many minimum genus embeddings of complete graph K_(12s+8) in orientable surfaces,which show that there are at least 10/3×(200/9)~s distinct minimum genus embeddings for K_(12s+8) in orientable surfaces.We have also proved that K_(12s+8) has at least 10/3×(200/9)~s distinct minimum genus embeddings in non-orientable surfaces.  相似文献   

10.
In this paper, we consider the problem of construction of exponentially many distinct genus embeddings of complete graphs. There are three approaches to solve the problem. The first approach is to construct exponentially many current graphs by the theory of graceful labellings of paths; the second approach is to find a current assignment of the current graph by the theory of current graph; the third approach is to find exponentially many embedding(or rotation) scheme of complete graph by finding exponentially many distinct maximum genus embeddings of the current graph. According to these three approaches, we can construct exponentially many distinct genus embeddings of complete graph K12s+3, which show that there are at least12× 2(009)s distinct genus embeddings for K12s+3.  相似文献   

11.
魏二玲  刘彦佩 《数学学报》2007,50(3):527-534
强嵌入猜想称:任意2-连通图都可以强嵌入到某一曲面上.本文通过分析极大外平面图的结构以及强嵌入的特征,讨论了该图类的不可定向强最大亏格,并给出了一个复杂度为O(nlogn)的算法.其中部分图类的强最大亏格嵌入提供该图的一个少双圈覆盖.  相似文献   

12.
A closed 2-cell embedding of a graph embedded in some surface is an embedding such that each face is bounded by a cycle in the graph. The strong embedding conjecture says that every 2-connected graph has a closed 2-cell embedding in some surface. In this paper, we prove that any 2-connected graph without V8 (the Möbius 4-ladder) as a minor has a closed 2-cell embedding in some surface. As a corollary, such a graph has a cycle double cover. The proof uses a classification of internally-4-connected graphs with no V8-minor (due to Kelmans and independently Robertson), and the proof depends heavily on such a characterization.  相似文献   

13.
A graph with n vertices is said to have a small cycle cover provided its edges can be covered with at most (2n ? 1)/3 cycles. Bondy [2] has conjectured that every 2-connected graph has a small cycle cover. In [3] Lai and Lai prove Bondy’s conjecture for plane triangulations. In [1] the author extends this result to all planar 3-connected graphs, by proving that they can be covered by at most (n + 1)/2 cycles. In this paper we show that Bondy’s conjecture holds for all planar 2-connected graphs. We also show that all planar 2-edge-connected graphs can be covered by at most (3n ? 3)/4 cycles and we show an infinite family of graphs for which this bound is attained.  相似文献   

14.
Thomassen formulated the following conjecture: Every 3-connected cubic graph has a red–blue vertex coloring such that the blue subgraph has maximum degree 1 (that is, it consists of a matching and some isolated vertices) and the red subgraph has minimum degree at least 1 and contains no 3-edge path. We prove the conjecture for Generalized Petersen graphs.We indicate that a coloring with the same properties might exist for any subcubic graph. We confirm this statement for all subcubic trees.  相似文献   

15.
We verify two special cases of Thomassen’s conjecture of 1976 stating that every longest cycle in a 3-connected graph contains a chord.We prove that Thomassen’s conjecture is true for two classes of 3-connected graphs that have a bounded number of removable edges on or off a longest cycle. Here an edge e of a 3-connected graph G is said to be removable if Ge is still 3-connected or a subdivision of a 3-connected (multi)graph.We give examples to showthat these classes are not covered by previous results.  相似文献   

16.
Bojan Mohar 《Discrete Mathematics》2010,310(20):2595-2599
A “folklore conjecture, probably due to Tutte” (as described in [P.D. Seymour, Sums of circuits, in: Graph Theory and Related Topics (Proc. Conf., Univ. Waterloo, 1977), Academic Press, 1979, pp. 341-355]) asserts that every bridgeless cubic graph can be embedded on a surface of its own genus in such a way that the face boundaries are cycles of the graph. Sporadic counterexamples to this conjecture have been known since the late 1970s. In this paper we consider closed 2-cell embeddings of graphs and show that certain (cubic) graphs (of any fixed genus) have closed 2-cell embedding only in surfaces whose genus is very large (proportional to the order of these graphs), thus providing a plethora of strong counterexamples to the above conjecture. The main result yielding such counterexamples may be of independent interest.  相似文献   

17.
The Cycle Double Cover Conjecture claims that every bridgeless graph has a cycle double cover and the Strong Cycle Double Conjecture states that every such graph has a cycle double cover containing any specified circuit. In this paper, we get a necessary and sufficient condition for bridgeless graphs to have a strong 5-cycle double cover. Similar condition for the existence of 5-cycle double covers is also obtained. These conditions strengthen/improve some known results.  相似文献   

18.
《Discrete Mathematics》2020,343(7):111904
An even cycle decomposition of a graph is a partition of its edges into cycles of even length. In 2012, Markström conjectured that the line graph of every 2-connected cubic graph has an even cycle decomposition and proved this conjecture for cubic graphs with oddness at most 2. However, for 2-connected cubic graphs with oddness 2, Markström only considered these graphs with a chordless 2-factor. (A chordless 2-factor of a graph is a 2-factor consisting of only induced cycles.) In this paper, we first construct an infinite family of 2-connected cubic graphs with oddness 2 and without chordless 2-factors. We then give a complete proof of Markström’s result and further prove this conjecture for cubic graphs with oddness 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号