首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对目前混沌优化算法在选取局部搜索空间时的盲目性,提出一种具有自适应调节局部搜索空间能力的多点收缩混沌优化方法.该方法在当前搜索空间搜索时保留多个较好搜索点,之后利用这些点来确定之后的局部搜索空间,以达到对不同的函数和当前搜索空间内已进行搜索次数的自适应效果.给出了该算法以概率1收敛的证明.仿真结果表明该算法有效的提高了混沌优化算法的性能,改善了混沌算法的实用性.  相似文献   

2.
Inverse problems in geophysics are usually described as data misfit minimization problems, which are difficult to solve because of various mathematical features, such as multi-parameters, nonlinearity and ill-posedness. Local optimization based on function gradient can not guarantee to find out globally optimal solutions, unless a starting point is sufficiently close to the solution. Some global optimization methods based on stochastic searching mechanisms converge in the limit to a globally optimal solution with probability 1. However, finding the global optimum of a complex function is still a great challenge and practically impossible for some problems so far. This work develops a multiscale deterministic global optimization method which divides definition space into sub-domains. Each of these sub-domains contains the same local optimal solution. Local optimization methods and attraction field searching algorithms are combined to determine the attraction basin near the local solution at different function smoothness scales. With Multiscale Parameter Space Partition method, all attraction fields are to be determined after finite steps of parameter space partition, which can prevent redundant searching near the known local solutions. Numerical examples demonstrate the efficiency, global searching ability and stability of this method.  相似文献   

3.
施工网络计划优化的极值种群遗传算法   总被引:3,自引:0,他引:3  
针对普通遗传算法用于施工网络计划优化的缺点,通过种群划分与极值搜索,建立了网络计划优化的极值种群改进遗传算法模型,有效地避免了陷入局部极值点,应用证明,该算法与普通遗传算法相比,具有优化速度快、求解精度高,全局寻优能力强等优点,尤其适合于大型复杂工程网络的优化计算。  相似文献   

4.
In many engineering optimization problems, the objective and the constraints which come from complex analytical models are often black-box functions with extensive computational effort. In this case, it is necessary for optimization process to use sampling data to fit surrogate models so as to reduce the number of objective and constraint evaluations as soon as possible. In addition, it is sometimes difficult for the constrained optimization problems based on surrogate models to find a feasible point, which is the premise of further searching for a global optimal feasible solution. For this purpose, a new Kriging-based Constrained Global Optimization (KCGO) algorithm is proposed. Unlike previous Kriging-based methods, this algorithm can dispose black-box constrained optimization problem even if all initial sampling points are infeasible. There are two pivotal phases in KCGO algorithm. The main task of the first phase is to find a feasible point when there is no feasible data in the initial sample. And the aim of the second phase is to obtain a better feasible point under the circumstances of fewer expensive function evaluations. Several numerical problems and three design problems are tested to illustrate the feasibility, stability and effectiveness of the proposed method.  相似文献   

5.
In this paper we present a chaos-based evolutionary algorithm (EA) for solving nonlinear programming problems named chaotic genetic algorithm (CGA). CGA integrates genetic algorithm (GA) and chaotic local search (CLS) strategy to accelerate the optimum seeking operation and to speed the convergence to the global solution. The integration of global search represented in genetic algorithm and CLS procedures should offer the advantages of both optimization methods while offsetting their disadvantages. By this way, it is intended to enhance the global convergence and to prevent to stick on a local solution. The inherent characteristics of chaos can enhance optimization algorithms by enabling it to escape from local solutions and increase the convergence to reach to the global solution. Twelve chaotic maps have been analyzed in the proposed approach. The simulation results using the set of CEC’2005 show that the application of chaotic mapping may be an effective strategy to improve the performances of EAs.  相似文献   

6.
Molecular similarity index measures the similarity between two molecules. Computing the optimal similarity index is a hard global optimization problem. Since the objective function value is very hard to compute and its gradient vector is usually not available, previous research has been based on non-gradient algorithms such as random search and the simplex method. In a recent paper, McMahon and King introduced a Gaussian approximation so that both the function value and the gradient vector can be computed analytically. They then proposed a steepest descent algorithm for computing the optimal similarity index of small molecules. In this paper, we consider a similar problem. Instead of computing atom-based derivatives, we directly compute the derivatives with respect to the six free variables describing the relative positions of the two molecules.. We show that both the function value and gradient vector can be computed analytically and apply the more advanced BFGS method in addition to the steepest descent algorithm. The algorithms are applied to compute the similarities among the 20 amino acids and biomolecules like proteins. Our computational results show that our algorithm can achieve more accuracy than previous methods and has a 6-fold speedup over the steepest descent method.  相似文献   

7.
Cluster analysis is an important task in data mining and refers to group a set of objects such that the similarities among objects within the same group are maximal while similarities among objects from different groups are minimal. The particle swarm optimization algorithm (PSO) is one of the famous metaheuristic optimization algorithms, which has been successfully applied to solve the clustering problem. However, it has two major shortcomings. The PSO algorithm converges rapidly during the initial stages of the search process, but near global optimum, the convergence speed will become very slow. Moreover, it may get trapped in local optimum if the global best and local best values are equal to the particle’s position over a certain number of iterations. In this paper we hybridized the PSO with a heuristic search algorithm to overcome the shortcomings of the PSO algorithm. In the proposed algorithm, called PSOHS, the particle swarm optimization is used to produce an initial solution to the clustering problem and then a heuristic search algorithm is applied to improve the quality of this solution by searching around it. The superiority of the proposed PSOHS clustering method, as compared to other popular methods for clustering problem is established for seven benchmark and real datasets including Iris, Wine, Crude Oil, Cancer, CMC, Glass and Vowel.  相似文献   

8.
阶梯状黄土边坡稳定性分析的关键是估算其稳定系数的最小值.稳定系数的求解涉及诸多因素且计算过程繁杂,传统优化算法往往不能有效地搜索到其全局最小解.为此,提出一种改进的自适应遗传算法.算法对基因变量空间进行网格状划分,采用迭代选优法建立均匀分布的初始种群,运用优质个体保留遗传策略,并按照特定的准则自适应地调整交叉概率和变异概率,提高算法的全局搜索能力和收敛速度.实例应用表明算法能够快速有效地收敛于土坡稳定系数的全局最小解,且计算结果与实际情况更加吻合.  相似文献   

9.
One of the most commonly encountered approaches for the solution of unconstrained global optimization problems is the application of multi-start algorithms. These algorithms usually combine already computed minimizers and previously selected initial points, to generate new starting points, at which, local search methods are applied to detect new minimizers. Multi-start algorithms are usually terminated once a stochastic criterion is satisfied. In this paper, the operators of the Differential Evolution algorithm are employed to generate the starting points of a global optimization method with dynamic search trajectories. Results for various well-known and widely used test functions are reported, supporting the claim that the proposed approach improves drastically the performance of the algorithm, in terms of the total number of function evaluations required to reach a global minimizer.  相似文献   

10.
针对个性化和多样性的需求,建立以缩短最长子线路为目标的最小-最大车辆路径问题模型, 并提出启发式算法求解。首先,采用自然数编码,使问题变得更简洁;用最佳保留选择法,以保证群体的多样性;引入爬山算法,加强局部搜索能力;其次,对遗传算法求得的精英种群再进行禁忌搜索,保证算法能够收敛到全局最优。最后,通过实例的计算,表明本算法均优于遗传算法和禁忌搜索算法,并为大规模解决实际问题提供思路。  相似文献   

11.
In this paper a new heuristic hybrid technique for bound-constrained global optimization is proposed. We developed iterative algorithm called GLPτS that uses genetic algorithms, LPτ low-discrepancy sequences of points and heuristic rules to find regions of attraction when searching a global minimum of an objective function. Subsequently Nelder–Mead Simplex local search technique is used to refine the solution. The combination of the three techniques (Genetic algorithms, LPτO Low-discrepancy search and Simplex search) provides a powerful hybrid heuristic optimization method which is tested on a number of benchmark multimodal functions with 10–150 dimensions, and the method properties – applicability, convergence, consistency and stability are discussed in detail.  相似文献   

12.
遗传信赖域方法   总被引:5,自引:0,他引:5  
钟守楠  高飞  纪昌明 《数学杂志》2001,21(4):468-472
本文将具有并行计算性能的遗传算法与具有全局收敛的信赖域方法相结合以形成混合搜索方法,为解决复杂多峰极值优化问题提供一种有效算法,证明了算法的收敛性。  相似文献   

13.
Traditionally, minimum cost transshipment problems have been simplified as linear cost problems, which are not practical in real applications. Some advanced local search algorithms have been developed to solve concave cost bipartite network problems. These have been found to be more effective than the traditional linear approximation methods and local search methods. Recently, a genetic algorithm and an ant colony system algorithm were employed to develop two global search algorithms for solving concave cost transshipment problems. These two global search algorithms were found to be more effective than the advanced local search algorithms for solving concave cost transshipment problems. Although the particle swarm optimization algorithm has been used to obtain good results in many applications, to the best of our knowledge, it has not yet been applied in minimum concave cost network flow problems. Thus, in this study, we employ an arc-based particle swarm optimization algorithm, coupled with some genetic algorithm and threshold accepting method techniques, as well as concave cost network heuristics, to develop a hybrid global search algorithm for efficiently solving minimum cost network flow problems with concave arc costs. The proposed algorithm is evaluated by solving several randomly generated network flow problems. The results indicate that the proposed algorithm is more effective than several other recently designed methods, such as local search algorithms, genetic algorithms and ant colony system algorithms, for solving minimum cost network flow problems with concave arc costs.  相似文献   

14.
"工期固定—资源均衡"优化是指在工期一定的条件下,合理调整网络计划的某些工序,以实现资源均衡利用的一种管理方法.本文基于工程项目资源均衡优化方法中常用的遗传算法和最小矩法,提出了一种混合遗传算法.该算法首先使用遗传算法得到一个较好的初始点,然后采用最小矩法进行局部优化,克服了遗传算法局部寻优能力不足的缺陷,增强了算法的优化效果.最后通过算例分析验证了该混合算法的可行性和有效性,因而是一种较好的优化算法.  相似文献   

15.
裴小兵  赵衡 《运筹与管理》2018,27(10):193-199
针对置换流水车间调度这类组合最优化问题的求解,提出了一种改进二元分布估计算法(Improved binary estimation distribution algorithm, I-EDA)。算法以二元分布估计算法为架构,使用NEH(Nawaz-Enscore-Ham)启发式算法生成初始解,提高了初始解的质量;通过对优势解的统计采样构建位置矩阵模型和链接矩阵模型,依照两个矩阵模型的合并概率组合链接区块产生子代。提出了NEH插入式重组策略和基于位置概率的交换策略和两种全新局部搜索机制替代原二元分布估计算法的相邻交换法,以进一步筛选优势解。最后通过对Reeves标准测试集的仿真实验和算法比较验证了所提出算法的有效性。  相似文献   

16.
The basic Harris Hawks optimization algorithm cannot take full advantage of the information sharing capability of the Harris Hawks while cooperatively searching for prey, and it is difficult to balance the exploration and development capacities of this algorithm. These factors limit the Harris Hawks optimization algorithm, such as in terms of premature convergence and ease of falling into a local optimum. To this end, an improved Harris Hawks optimization algorithm based on information exchange is proposed to optimize the continuous function and its application to engineering problems. First, an individual Harris Hawk obtains information from the shared area of cooperative foraging and the location area of collaborators, thereby realizing information exchange and sharing. Second, a nonlinear escaping energy factor with chaos disturbance is designed to better balance the local searching and the global searching of the algorithm. Finally, a numerical experiment is conducted with four benchmark test functions and five CEC-2017 real-parameter numerical optimization problems as well as seven practical engineering problems. The results show that the proposed algorithm outperforms the basic Harris Hawks optimization algorithm and other intelligence optimization algorithms in terms of the convergence rate, solution accuracy, and robustness.  相似文献   

17.
Steepest descent preconditioning is considered for the recently proposed nonlinear generalized minimal residual (N‐GMRES) optimization algorithm for unconstrained nonlinear optimization. Two steepest descent preconditioning variants are proposed. The first employs a line search, whereas the second employs a predefined small step. A simple global convergence proof is provided for the N‐GMRES optimization algorithm with the first steepest descent preconditioner (with line search), under mild standard conditions on the objective function and the line search processes. Steepest descent preconditioning for N‐GMRES optimization is also motivated by relating it to standard non‐preconditioned GMRES for linear systems in the case of a standard quadratic optimization problem with symmetric positive definite operator. Numerical tests on a variety of model problems show that the N‐GMRES optimization algorithm is able to very significantly accelerate convergence of stand‐alone steepest descent optimization. Moreover, performance of steepest‐descent preconditioned N‐GMRES is shown to be competitive with standard nonlinear conjugate gradient and limited‐memory Broyden–Fletcher–Goldfarb–Shanno methods for the model problems considered. These results serve to theoretically and numerically establish steepest‐descent preconditioned N‐GMRES as a general optimization method for unconstrained nonlinear optimization, with performance that appears promising compared with established techniques. In addition, it is argued that the real potential of the N‐GMRES optimization framework lies in the fact that it can make use of problem‐dependent nonlinear preconditioners that are more powerful than steepest descent (or, equivalently, N‐GMRES can be used as a simple wrapper around any other iterative optimization process to seek acceleration of that process), and this potential is illustrated with a further application example. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
徐建中  晏福 《运筹与管理》2020,29(9):149-159
为了提高鲸鱼优化算法(WOA)的全局优化性能, 提出了一种基于黄金分割搜索的改进鲸鱼优化算法(GWOA)。首先利用黄金分割搜索对WOA的初始种群进行初始化, 使得初始种群能够尽可能的靠近全局最优解, 然后利用黄金分割搜索所形成的变区间, 进行变区间黄金分割非均匀变异操作, 以增加WOA的粒子多样性和提高粒子跳出局部最优陷阱的能力, 从而改善WOA的寻优性能。选取了15个大规模测试函数进行数值仿真测试, 仿真结果和统计分析表明GWOA的寻优性能要优于对比文献的改进鲸鱼优化算法(IWOA)。此外, 将GWOA用于对工程实际应用领域中的电力负荷优化调度问题进行实例分析, 实例应用结果表明, GWOA能有效对电力负荷优化调度问题进行寻优求解。  相似文献   

19.
A DERIVATIVE-FREE ALGORITHM FOR UNCONSTRAINED OPTIMIZATION   总被引:1,自引:0,他引:1  
In this paper a hybrid algorithm which combines the pattern search method and the genetic algorithm for unconstrained optimization is presented. The algorithm is a deterministic pattern search algorithm,but in the search step of pattern search algorithm,the trial points are produced by a way like the genetic algorithm. At each iterate, by reduplication,crossover and mutation, a finite set of points can be used. In theory,the algorithm is globally convergent. The most stir is the numerical results showing that it can find the global minimizer for some problems ,which other pattern search algorithms don't bear.  相似文献   

20.
The global optimization method based on discrete filled function is a new method that solves large scale max-cut problems. We first define a new discrete filled function based on the structure of the max-cut problem and analyze its properties. Unlike the continuous filled function methods, by the characteristic of the max-cut problem, the parameters in the proposed filled function does not need to be adjusted. By combining a procedure that randomly generates initial points for minimization of the proposed filled function, the proposed algorithm can greatly reduce the computational time and be applied to large scale max-cut problems. Numerical results and comparisons with several heuristic methods indicate that the proposed algorithm is efficient and stable to obtain high quality solution of large scale max-cut problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号